1、 物理学史学习感受物理学是一门基础科学,是人们对无生命自然界中物质的转变的知识做出规律性的总结。它研究的是物质运动的基本规律。不同的运动形式具有不同的运动规律,因而要用不同的研究方法处理,基于此,物理学又分为力学、热学、电磁学、光学和原子物理学等各个部分。按照物理学的历史发展又可以分为经典物理与近代物理两部分。近代物理是相对于经典物理而言的,泛指以相对论和量子论为基础的20世纪物理学。由于物理学研究的规律具有很大的基本性与普遍性,所以它的基本概念和基本定律是自然科学的很多领域和工程技术的基础。由于物理学知识构成了物质世界的完整图象,所以它也是科学的世界观和方法论赖以建立的基础。1、 物理学是自
2、然科学的带头学科物理学作为严格的、定量的自然科学的带头学科,一直在科学技术的发展中发挥着极其重要的作用。它与数学、天文学、化学和生物学之间有密切的联系,它们之间相互作用,促进了物理学及其它学科的发展。物理学与数学之间有深刻的内在联系。物理学不满足于定性地说明现象,或者简单地用文字记载事实,为了尽可能准确地从数量关系上去掌握物理规律,数学就成为物理学不可缺少的工具,而丰富多彩的物理世界又为数学研究开辟了广阔的天地。历史上有许多著名科学家,如牛顿、欧拉、高斯等,对于这两门科学都做出了重要贡献。19世纪末、20世纪初的一些大数学家如彭加勒、克莱因、希尔柏特等,尽管学术倾向不同,但都精通理论物理。近代
3、物理学中关于混沌现象的研究也是物理学与数学相互结合的结果。物理学与天文学的关系更是密不可分,它可以追溯到早期开普勒与牛顿对行星运动的研究。热核反应理论是首先为解释太阳能源问题而提出的,中子星理论则因脉冲星的发现得到证实,而现代宇宙论的标准模型大爆炸理论,是完全建立在粒子物理理论基础上的。物理学与化学本是唇齿相依、息息相关的。化学中的原子论、分子论的发展为物理学中气体动理论的建立奠定了基础,而物理学中量子理论的发展,原子的电子壳层结构的建立又从本质上说明了各种元素性质周期性变化的规律。物理学在生物学发展中的贡献体现在两个方面:一是为生命科学提供现代化的实验手段,如电子显微镜、X射线衍射、核磁共振
4、、扫描隧道显微镜等;二是为生命科学提供理论概念和方法。分子生物学已经构成了生命科学的前沿领域,生物物理学显然也是大有可为的。2、物理学是现代技术革命的先导一般说来,物理学与技术的关系存在两种基本模式:其一是由于生产实践的需要而创建了技术,例如18世纪至19世纪蒸汽机等热机技术,然后提高到理论上来,建立了热力学,再反馈到技术中去,促进技术的进一步发展;其二是先在实验室中揭示了基本规律,建立比较完整的理论,然后再在生产中发展成为一种全新的技术。在当今世界中,第二种模式的重要性更为显著,物理学已成为现代高技术发展的先导与基础学科。反过来,高技术发展对物理学提出了新的要求,同时也提供了先进的研究条件与
5、手段。所谓高技术指的是那些对社会经济发展起极大推动作用的当代尖端技术,即核能技术、超导技术、信息技术、激光技术、电子技术等。3、物理学是科学的世界观和方法论的基础物理学描绘了物质世界的一幅完整的图象,它揭示出各种运动形态的相互联系与相互转化,充分体现了世界的物质性与物质世界的统一性著名的物理学家法拉第、爱因斯坦对自然力的统一性怀有坚强的信念,他们一生始终不渝地为证实各种现象之间的普遍联系而努力。物理学史告诉我们,新的物理概念和物理观念的确立是人类认识史上的一个飞跃,只有冲破旧的传统观念的束缚才能得以问世。例如普朗克的能量子假设,由于突破了“能量连续变化”的传统观念,而遭到当时物理学界的反对。普
6、朗克本人由于受到传统观念的束缚,在他提出能量子假设后多年,长期惴惴不安,一直徘徊不前,总想回到经典物理的立场。同样,狭义相对论也是爱因斯坦在突破了牛顿的绝对时空观的束缚,形成了相对论时空观的基础上建立的。而洛伦兹由于受到绝对时空观的束缚,他提出了正确的坐标变换式,但不承认变换式中的时间是真实时间,一直提不出狭义相对论。这说明正确的科学观与世界观的确立,对科学的发展具有重要的作用。在实际的科学发现中,不存在严格的逻辑通道,科学的创造常常是由于科学家们独特的创造性思维的结果。科学研究中常用的方法列举如下(1)物理模型 物理模型是为了便于研究而建立的高度抽象的反映事物本质特征的理想物体。比如克劳修斯
7、提出理想气体模型,推导出气体压强公式;范德瓦尔斯分子模型的提出,导致真实气体方程的建立;安培提出分子电流模型,对物质磁性的本质作了解释;麦克斯韦用分子涡旋的力学模型,导出了磁力公式、磁能公式,解释了电磁感应现象。物理学中还有质点、刚体、单摆、点电荷、绝对黑体以及各种原子模型都是物理模型。分析前人在研究过程中建立模型的根据和思路,有助于增进对科学思想的理解(2)理想实验 理想实验是一种按照实验的模型展开的思想推理过程,是逻辑推理的一种方法和形式。例如伽利略为说明惯性原理提出的球沿光滑斜面下滑又上升的理论实验,牛顿为揭示天体运动与地上运动的统一性而构思的在山巅上作平抛运动的理想实验等等。(3)物理
8、类比 物理类比方法是利用一种科学定律和另一种科学定律之间的部分相似性,用它们中的一个去说明另一个。例如,麦克斯韦通过把力线和不可压缩流体的流线加以类比,找到了法拉第力线的数学描述;德布罗意通过力学和光学类比,引进了波粒二象性概念,提出了“物质波”假设。 (4)物理假说 假说是根据一定的科学事实和科学理论对研究中的问题所提出的假定性的看法和说明。假说在科学发展过程中具有十分重要的作用。例如麦克斯韦为了解释在变化磁场中的导体回路上所产生的感应电流的现象,提出了感生电场的假说;为了解决安培环路定律在传导电流不连续时所遇到的困难,提出了位移电流的假说。又如普朗克为了解释他导出的与实验结果完全一致的辐射
9、公式提出了能量量子化的假说。又如爱因斯坦解释光电效应实验提出的光量子假说。综上所述,一、学习物理学史,让我了解了物理学史,培养了观察和分析问题的能力。物理学是一门以实验为基础的科学,观察和实验既是研究物理学的基本方法,也是学习物理学的基本方法,物理学史描述了许多科学家善于从不被人注意的一些平常现象中细心地观察与思考的事例。比如伦琴一生在物理学领域中进行过大量实验研究工作,一次实验中,他偶然发现包有黑纸的底片被曝光,但他从没放过这一个细小的现象。正是他这种观察能力、分析能力使他发现X射线从而获得诺贝尔奖。因此在今后的学习中就要有目的地观察,亲自动手实验,逐步培养勤观察、勤思考的习惯,这种能力的培
10、养在今后的工作中将受益无穷。二、学习物理学史,让我拥有了质疑精神和提出科学问题的能力。独立思考和独立判断的一般能力,首先表现在怀疑和批判的精神。科学史上大量事例表明,不囿于传统理论和观念,不迷信权威和书本,是科学创造的思想前提。众所周知,在爱因斯坦之前,洛仑兹和彭加勒已经走到相对论的大门口,只是由于未能摆脱绝对时空观的束缚,才没有最终迈入相对论的门坎。正是由于爱因斯坦抛开了“绝对运动”和“静止以太”的观念,并深刻地审察了“同时性”概念的物理学根据,才创建了狭义相对论,引起了人类时空观的巨大变革。三、学习物理学史,让我了解了物理大师的科学方法和进行科学思维的训练。物理学研究中建立了许多理想模型、理想过程、理想实验,运用了观察和实验、类比和联想、猜测和试探、分析和 综合、佯谬和反证方法、科学假设方法等等。物理学史中有大量生动事例说明科学大师们熟练而巧妙地运用这些方法取得重要成果的过程。比如讲“自由落体运动”时,介绍伽利略用归谬法驳斥亚里士多德“重的物体比轻的物体落得快”。 四、学习物理学史,能为更好地掌握物理知识内容服务。