1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,本幻灯片资料仅供参考,不能作为科学依据,如有不当之处,请参考专业资料。谢谢,电化学过程中离子交换膜,吴雪梅,Tel:13940978991Email:xuemeiw,第1页,1,Contents,Examples of Electrochemical process,1.1 Chemical Batteries,1.2 Fuel Cells,1.3 Hydrogen pump/reactor,Ion exchange membranes,2.1 Characteristics,2.2 Preparati
2、on,第2页,2,关注电化学过程中两类电池隔膜,(1)非传递性膜,隔开阴、阳两极,(2)离子交换膜,隔开阴、阳两极电解质,传导功效离子,第3页,3,一次电池,1.1 Chemical batteries,化学电源(又称电池),是一个能将化学能直接转变成电能装置,它经过化学反应,消耗某种化学物质,输出电能。,二次电池,发电机,第4页,4,锂电池(属于二次电池),锂是密度最小金属,用锂作为电池负极,跟用相同质量其它金属作负极相比较,使用寿命大大延长。,使用锂电源手机与手提电脑,非传导性膜实例,第5页,5,隔膜,正极,负极,安全阀,电解液,Li,+,+6C+e,LiC,6,LiMnO,2,MnO,2
3、,+Li,+,+e,摇椅式电池:充电时锂离子嵌入负极碳材料,放电时锂离子脱嵌。,隔膜作用,阻隔阴、阳两极,持有电解液,材料例:,负极:多用石墨、钛酸盐,正极:锂铁磷酸盐,电解液:高氯酸锂、四氯铝化锂,第6页,6,超级电容器(新型储能器件),双电层,赝电容,隔膜作用,阻隔阴、阳两极,持有电解液,电解液:,H2SO4或KOH水溶液,聚丙烯碳酸酯+离子液体等非水体系,电极:多孔碳材料,金属氧化物/聚合物等,特点:快速充放电min,循环次数高万次,充电容量约10Wh/L或10Wh/kg,第7页,7,Redox flow battery(液流电池,属于二次电池,大规模储能),传递性隔膜实例,电解液:水系
4、/有机体系,全钒/1.25V,铁铬/1.18V,多硫化钠/溴/1.355V,锌/溴/1.9V,电极:多孔碳材料等,隔膜:离子交换膜,阴/阳离子,充电容量约20Wh/L,隔膜作用,阻隔阴、阳两极,传递离子,第8页,8,采取阴、阳离子交换膜,传递离子种类不一样,阳离子交换膜 阴离子交换膜,第9页,9,1.2 燃料电池(Fuel Cell,FC),H,2,2H,+,1/2O,2,2H,+,H,2,O,阳极:H,2,=2H,+,+2e,-,阴极:12O,2,2H,2e,-,=H,2,O,总反应:,H2,+,1/2O2=H2O,FC is a generator,Fuel cell function o
5、n the same principles as batteries except the reactants and products can continuously be added and removed from the system.,Revised process of water electrolysis,隔膜作用,阻隔阴、阳两极反应物,传递离子,第10页,10,酸、碱性条件下工作燃料电池,酸性-阳离子交换膜,阳极:H,2,=2H,+,+2e,-,阴极:12O,2,2H,2e,-,=H,2,O,总反应:,H2,+,1/2O2=H2O,碱性-阴离子交换膜,第11页,11,直接甲醇
6、燃料电池(DMFC),酸性-阳离子交换膜,阳极:CH3OH=2H,+,+CH,2,O+2e,-,阴极:12O,2,2H,2e,-,=H,2,O,总反应:,H2,+,1/2O2=H2O,碱性-阴离子交换膜,阳极:CH,3,OH6OH,-,CO,2,5H,2,O6e,-,阴极:3/2O,2,3H,2,O6e,-,6OH,-,总反应:CH,3,OH3/2O,2,CO,2,2H,2,O,第12页,12,13,H,2,1/2O,2,2H,+,H,2,O,质子交换膜,阴离子交换膜,Advantages:High conductivity(100mS/cm2)Thermal&chemical stable1
7、00C,Problems:High methanol crossoverNoble catalysts,Advantages:Low methanol crossoverNon-noble catalysts,Problems:Low conductivity(50mS/cm2)Less thermal&chemical stable60C,第13页,13,微生物燃料电池Mcrobial Fuel Cell(MFC),Single chamber reactor,load,Anode,Cathode,bacteria,Oxidation products(CO,2,),Fuel(wastes)
8、,e,-,Oxidant(O,2,),Reduced oxidant(H,2,O),H,+,e,-,质子交换膜,输出功率密度提升(0.3 W/m2,),Bacteria growing on electrode,Solution containing substrate,第14页,14,1.2 Fuel Cell,History,第15页,15,Operating Temp.(K),303-353,373-493,253-373,923-1123,973-1273,第16页,16,燃料电池组件-单电池,HEMFC单电池结构图,第17页,17,燃料电池组件-电堆,第18页,18,GE PEM f
9、uel cell from Gemini 7,1 kW Portable,Quieter and cleaner than a diesel generator,but larger and more complex.,Plug Power 7 kW Residential PEM System,Chrysler Fuel Cell System for a Car,PEMFC,第19页,19,Fueling NECAR 4 from hydrogen station,Al/C composite tanks for storage of H,2,at 350 bar,Fueling a Hy
10、drogen Car,第20页,20,第21页,21,Miniature PEM Fuel Cells,Micro fuel cell developed by Fraunhofer for computers,cell phones,millitory etc.,Direct Methanol PEM fuel cell for laptop computers,微型侦察直升机,爱普生,东芝企业开发用于PDA 微型直接甲醇燃料电池,,连续工作40h,“大黄蜂-I”燃料电池无人飞行器,美国DAPAR,第22页,22,Comparison of Chemical Battery,第23页,23,
11、液流电池、超级电容器:充电容量约20Wh/L,第24页,24,火电:化学能 热能 机械能 电能,燃料电池:化学能 电能,Efficiency:20%-30%,Efficiency:40%-60%,High Efficiency,第25页,25,燃料电池发电与火力发电污染比较,00.14,365680,45320,090,尘灰,14102,30104,1355000,201270,烃类,63107,3200,3200,1800,NO,x,00.12,8200,4550,2.5230,SO,2,燃料电池发电,煤发电,重油发电,天然气发电,污染成份,Low Pollution,第26页,26,1.3
12、 Polymer Electrolyte Hydrogen Pump(PEHP),电化学氢泵,是一个电化学装置;,可采取燃料电池成套装置。,Polymer,Electrolyte,Anode,Cathode,H,+,e,-,(1-x)H,2,/CO,2,H,2,/CO,2,x H,2,应用:,H2 提纯(,H2/CH4,Reformate,H2/CO2/CO,Low concentrated H2,),H2压缩(50Bar),加氢反应,隔膜作用,阻隔阴、阳两极反应物,传导离子,第27页,27,Polymer Electrolyte Hydrogen Pump Reactor(PEHPR),电化
13、学氢泵反应器,电化学反应装置,,高选择性、原位供氢、常压反应、绿色可连续、加氢反应与电能共生,传统加氢过程 氢泵加氢过程,扩散边界层,催化剂颗粒,氢气泡,扩散层,微孔层,催化层,质子交换膜,H,2,+H,2,O,H,2,+H,2,O,加氢反应液,生成液,+H,2,第28页,28,Polymer Electrolyte Hydrogen Pump Reactor(PEHPR),电化学氢泵反应器,电化学反应装置,,高选择性、原位供氢、常压反应、绿色可连续、加氢反应与电能共生,酸性阴 2H+2e-=H2阳 2H2O-4e-=O2+4H+,碱性阴 H2O+e-=OH-+H2阳 4OH-4e-=2H2O
14、+O2,第29页,29,化学品与电能共生,直接醇燃料电池反应器,碱性-阴离子交换膜,直接醇进料,有机酸,第30页,30,丙烯醇加氢与电共生,马紫峰等人采取SPE反应器首先实现了丙烯醇加氢与电能共生过程,外部不提供电压。,反应自发进行,并产生电能,表1 流量对加氢反应影响,X.-Z.Yuan et al./Electrochemistry Communications 5()189193,31,第31页,31,H,2,2H,+,1/2O,2,2H,+,H,2,O,燃料电池,光伏电池,染料敏化电池,液流电池,Polymer,Electrolyte,Anode,Cathode,H,+,e,-,(1-
15、x)H,2,/CO,2,H,2,/CO,2,x H,2,或催化加氢,电化学氢泵,基于离子交换膜新能源体系,离子交换膜,-关键部件,第32页,32,33,2 离子交换膜(荷电膜),H,2,1/2O,2,2H,+,H,2,O,燃料电池,应用-性能要求,阻隔阴、阳两极,离子传导性高,干/湿膜机械强度高,燃料渗透率低,热稳定性好,化学稳定性好,质子交换膜,液流电池,第33页,33,2.1 Characteristics,电化学性能,干/湿膜机械强度,燃料渗透性,热稳定性,化学稳定性,第34页,34,Nafion212/SiO2,Higher performance at 100C,电化学性能,燃料电池
16、极化曲线,TPQPOH for HEMs,第35页,35,On Pt/C HOR:10mV,ORR:59mV,Mixed potential at cathode,极化曲线,第36页,36,Electrochemistry Fundamentals,Reversible potential of FC,For an electrochemical reaction:,Gibbs free energy is obtained:,Electrical work done through this reaction:,Thus:,第37页,37,For H2/O2 FC,Anode:H2=2 H+
17、2 e-,Cathode:O2+4H+4e-=2H2O,Overall:,Nernst Equation:,The reversible cell potential for nonstandard conditions,Liquid water:1,Water vapor:partial pressure,第38页,38,For liquid water,For water vapor,HHV:,high heating value,LHV:,Low heating value,第39页,39,直接甲醇燃料电池,其总反应式:,吉布斯生成自由能改变:702.5/mol,一个甲醇分子反应转移个e
18、,即z=6,直接甲醇燃料电池,标准热力学电势,:,阳极:CH3OH+H2O=CO2+6 H+6 e-,阴极:3/2O2+6 H+6 e-=3 H2O,总反应:CH3OH+3/2 O2=CO2 +2 H2O,第40页,40,液流电池充放电曲线,第41页,41,液流电池充放电曲线,-离子交叉污染,-欧姆电阻,均与膜性能相关,第42页,42,Ohmic Resistance,离子交换膜主要性能指标,直接影响电池工作效率;,燃料电池包含膜电阻(主要)、膜与电极(MEA)接触电阻;,液流电池与膜电阻及电解液电阻相关,其中,膜电阻常成为主要影响原因,液流电池,第43页,43,Ohmic Resistanc
19、e,表征参数有:,电导率(,,proton conductivity,S/cm);,面电阻(,cm2,),膜电导率与膜面积、膜厚(长)度无关,便于比较不一样种类膜电性能;,电池系统中,膜电性能与电阻相关,常与膜厚度(反应机械强度)存在矛盾。,测量:交流阻抗法、Current interruption,第44页,44,取代度,(Degree of substitution),指:1摩尔重复(结构)单元中所含离子传导基团摩尔数。即为摩尔取代度。,对同一个类膜,电导率随取代度增加而提升。,重复单元:,结构单元:,离子交换膜,电性能主要原因,1.离子交换基团数量,取代度(磺化度、氯甲基化程度、季铵化程
20、度),离子交换容量(Ionic exchange capacity,IEC),当量质量(Equivalent weight,EW),影响膜电性能和机械强度,第45页,45,离子交换容量(IEC,,ionic exchange capacity,),指:1克干树脂所含离子传导基团摩尔数。对同一个类膜,电导率随IEC增加而提升。,当量质量(EW,Equivalent weight),指:,含,有1,摩尔离子传导基团干树脂质量。,对同一个类膜,电导率随EW,增加而降低。,通常,IEC越高,,膜亲水性越强,但在水中溶胀也越大。,第46页,46,测定方法,离子交换法,H-NMR,磺化度(Sulfonat
21、ion degree)季铵化(Quaternization degree),SPPESK,第47页,47,H-NMR,磺化(Sulfonation)季铵化(Quaternization),第48页,48,离子交换膜,电性能主要原因,2,微观结构,要求采取致密膜,预防燃料气渗透;,能够是均质膜、复合膜,均相膜、异相膜,无定型膜、结晶膜等,微观结构各种;,受制膜条件(如溶剂种类、挥发速度等)影响;,能够采取电镜(SEM,TEM)、原子力显微镜(ATM)、XRD等表征;,对电性能,热机械性能产生很大影响。,惯用制备方法,溶液浇注法-适合制备致密膜,相转化法-适合制备多孔膜,第49页,49,Micro
22、phase separation,“Inverted micelles ionic network”model,High conductivity due to dual-continuous microstructure,Microstructure of Nafion,TEM of Nafion,全氟磺酸膜中质子传递离子簇模型,Hydrophobic domains,Hydrophilic domains,第50页,50,小角X射线散射(SAXS),相区尺寸、中间层厚度、团聚程度、相区混和链段数,第51页,51,离子交换膜,电性能主要原因,3.含水率(Water uptake),通常,电导
23、率随水含量增加而增加,电导率较高区域,含水率随磺化度突变,高温下溶胀甚至溶解。,第52页,52,53,离子活动性:包含解离程度和传导通道波折度,水含量引发离子活动性改变,第53页,53,干/湿膜机械强度,影响电池性能;,影响膜使用寿命(成本);,热、水溶胀应力,固体颗粒打孔,压力过大,原料气分布不均等都可造成膜机械强度降低。,第54页,54,1.溶胀度(Swelling ratio),指膜在溶胀状态下尺寸改变率(湿膜),能够采取膜长度、面积或体积改变率来表示;,随膜中含水率增加而增大,过分溶胀时会造成膜机械性能恶化。,第55页,55,Strain-water vapor,Swelling in
24、 water,随膜中水含量增加,溶胀度增加,第56页,56,溶胀度影响酸浓度、离子活动性,以及电导率,第57页,57,2.,应力-应变,采取干膜或湿膜测定。,膜应力-应变曲线,脆性材料,断裂强度,断裂伸长,韧性材料,屈服应力,断裂伸长,第58页,58,燃料渗透性,影响电池效率,甲醇或离子渗透率测试装置,甲醇浓度与时间(C,B,-t)曲线,第59页,59,热稳定性,玻璃化转变温度,热分解温度,玻璃化转变温度(T,g,),指聚合物链段开始运动时温度,标志着聚合物从玻璃态向橡胶态转变,属于一个相转变温度;,能够采取示差扫描量热法、动态粘弹谱仪、形变法、膨胀法等各种方法测量。,第60页,60,热分解温
25、度能够采取各种表示方法:,T,max,T,onset,T,d,5%:第一失重峰中失重量为5%时温度,第61页,61,动态力学能谱(DMA),弹性模量,玻璃化温度,力学损耗,第62页,62,化学稳定性,质子交换膜在电池环境下使用时,常会受到酸、碱及金属离子腐蚀,测试其耐腐蚀性非常主要。,如:,Nafion膜使用前需要用约3%H,2,O,2,煮沸1h,再用0.5M H,2,SO,4,煮沸1h,然后用去离子水重复煮沸洗至中性。,或:用Fenton试剂、NaOH浸泡,碱性膜泡在热NaOH溶液中,第63页,63,季铵基团稳定性差,季铵基团在高温、高PH值下易发生降解,机理:,1),Hofmann降解(E
26、2消除),OH-攻击季铵上-H生成烯烃,胺类和H,2,O,中温(60,)时发生迟缓,当温度超出100,时反应很快。,第64页,64,2,)S,N,2亲核取代,OH-攻击季铵上-H生成醇和胺,第65页,65,3),E1消除,当带电原子基团很大时,OH-会攻击季铵上-C或-C,生成链烯烃和胺,但这种消除极少发生,第66页,66,电化学稳定性,金属离子造成膜电导率、吸水性下降,-SO,3,H+Na,+,-SO,3,Na+H,+,第67页,67,电化学稳定性,电化学反应产生自由基引发膜降解,第68页,68,电化学稳定性能,单电池寿命曲线,第69页,69,Outstanding features,Hig
27、h proton conductivity(0.1S/cm);,High chemical and mechanical stabilities;,Only commercially used PEMs.,Costly,800$/m2,Low thermal stability(Tg=90-110 C),High methanol crossover,Perfluorinated PEMs,Perfluorinated polymer backbone,Flexible side chain,Proton,conducting group,Commercial proton exchange
28、membranes,2.2 Preparation,第70页,70,商业化阴离子交换膜,企业,膜产品,结构,Tokuyama Co.Ltd.Japan,Neosepta AHA 系列,PS/DVB,Asahi Glass Co.Ltd.,Japan,AMV,Selemion AMV,ASV,PS/butadiene,PS-b-EB-b-PS,Shanghai Chemical Plant of China,China,PE3362,Heterogeneous PE,RAI Research Corp,USA,R-5030-L,R-1030,LDPF (IPN),IPN-uorinated,CS
29、MCRI,Bhavnagar India,IPA,HGA,LDPE/HDPE (IPN),Heterogeneous PVC,J.Membr.Sci.,377,135.,第71页,71,Materials,Polymers,Non-fluorinated PEMs,High water content,High Tg,Low methanol pomeability,Low proton conductivity,第72页,72,Ceramics(使用非常少),第73页,73,制备方法一:膜中添加小分子酸/碱,液体酸、杂多酸、离子液体、SiO2、MMT等,提升电池使用温度,降低对水依赖,Mos
30、t popular and successful,Temp.160C,Conductivity increases with temp.,Non-humidified condition,Poison tolerance(CO,SO2 ect.),Ionic bonds between PBI and H3PO4,40,H3PO4/PBI repeat unit.Stability,resolution,oxidation problems,第74页,74,HPA(,Heteropolyacids,),脱水或极性溶剂中,水中,*质子传导率高(与其含水量亲密相关,如,(H3PW3O40)at 2
31、9 and 6 hydrated water molecules decreased from 1,.,8 102 to 6 105 S/cm,respectively。,);,*含有结晶水结晶性物质;,*溶于水或极性溶剂,所以多用于不增湿环境;,*100,以上稳定。,第75页,75,PBI dope HPA,180C不增湿,PBI掺杂H3PO4+PMo12达0.02S/cm,PBI掺杂H3PO4高达0.03 S/cm,第76页,76,Super acid,Decreasing water dependence,Conductivity decreases with temp.,No repo
32、rt for unhydrated conditions,Helps H+hopping as a bridge,Superacidity in dry state,PKa 11,第77页,77,Doping N,aOH,高电导率,10-2 S/cm,化学稳定性差,小分子碱轻易流失,第78页,78,蒙脱土及插层复合,xM+nH,2,O,6O,4(Si或Al),4O+2OH,46(Al,Mg,Fe),4O+2OH,6O,4(Si或Al),氧,氢氧,铝、镁、铁等,金属离子,硅,第79页,79,Xing D.,He G.,Int J Hydrogen Energy,36,2177-2183.,Suf
33、onated MMT/SPSU/PTFE PEMs,Design:sulfonation of MMT to enhance proton conductivity and organic-inorganic compatibility,第80页,80,Self-assembly PEMsSiO2,Ionic interaction,第81页,81,Ionic liquid,High proton conductivity at high TLeach problem,第82页,82,制备方法二:膜中引入固定离子传导基团,Dissociated as swelling,releasing co
34、unter ions(H+,OH-)to the solution and leaving fixed ions in the membranes(-SO3-,N+(CH3)3).The fixed ions will repel ions with the same charge,while attract ions with different charge and allow it transport through the membranes.,Allowing cation transport,Strong acidic(-SO3H),Weak acidic(H3PO4、-COOH等
35、),Allowing ion transport,Such as-N(CH,3,),3,OH,+,-,Fixed ion,Counter ion,such as,H,+,+,-,Fixed ions,Counter ion,,such as OH,-,第83页,83,Sulfonation for proton exchange membranes(PEMs),1.Post-sulfonation on,electron-rich,aromatic rings,对热/化学稳定好、机械性能优良聚合物(PS、PBI、PPO、PPS、PES、PEK、PEEK、PSU、PEI等)进行磺化改性,在主链上
36、引入磺酸基团来实现阳离子传导功效;,该方法是质子交换膜制备最基本路线之一。,磺化剂种类多样,硫酸均相磺化;,(发烟)硫酸、氯磺酸、三氧化硫等非均相磺化;,温和磺化剂磺化,如磺酸酯型、三甲基硅氯磺酸、三氧,化硫-三乙基磷酸复合物;,金属化-亚磺酸化-氧化路线。,第84页,84,发烟H,2,SO,4,,60,0,C,3h,均相,芳香化合物特征反应,亲电取代反应,普通认为,亲电试剂,是SO3,它,进攻芳环上富电子位置,生成络合物,然后在碱,HSO,4,-,存在下脱除质子得到芳磺酸;,可逆反应,,增加反应体系中SO3 浓度,尽可能降低体系中生成H2O 浓度,能够提升产物磺化度;,吸热反应,,升高温度有
37、利于提升产物磺化度。,第85页,85,非均相磺化,氯磺酸为强磺化剂,需按照反应配比加入。过量时易生成氯磺化聚合物或引发聚合物降解。,采取硫酸、氯磺酸、三氧化硫等作磺化剂时,为预防反应过于猛烈,降低酸用量,聚合物先溶解在溶剂中,然后加入磺化剂,常形成,非均相磺化反应,;,惯用溶剂为二氯甲烷、三氯甲烷、1,2-二氯乙烷等。,第86页,86,缺点:,热稳定性差,酸性较低,优点:,反应简单,适应性广,优点:,-SO3H取代位置为带有吸电基苯环,热稳定性好,酸性较高,缺点:,反应复杂,第87页,87,在苯环稳定位置磺化,提升酸度和SO3H基团热稳定性;,H2SO3,SO2,部分氧化,SO2,SO3H,S
38、O2,反应条件较苛刻,氧化有时使用H2O2,易使主链降解,2.Sulfonation on,electron-poor,aromatic rings,1)金属化-亚磺酸化-氧化路线,第88页,88,提升SO3H基团酸度,1)金属化-亚磺酸化-氧化路线-,制备支链磺酸PEM,第89页,89,磺化较均匀,制备嵌段或无规聚合物,吸电位置磺化,反应温度高、时间长,磺化聚合物分子量不易控制。,2 Sulfonation on,electron-poor,aromatic rings,2),磺酸单体聚合,第90页,90,第91页,91,3.Surface sulfonation,1),Swelling(+
39、monomer polymerization),将多孔PTFE膜浸入Nafion溶液,制备复合膜降低Nafion用量,降低成本。,第92页,92,3.Surface sulfonation,2)Radiation graft,利用高能射线,如,射线、,Co60,、等离子体放电等,辐照聚合物膜表面,使局部化学键断裂,产生活性自由基,引发活泼单体在膜表面聚合;,操作简单,表面改性均匀;,能够在聚合物表面加入功效基团。,第93页,93,Crosslinking,目标:限制膜在水溶液中过分溶胀,保持其机械强度,小分子醇为交联剂,SPPESK二元胺交联,Covalent crosslinking,-SO
40、3H基团作交联点,PVA-SPPESK交联,以及PVA自交联,第94页,94,Overcome brittleness of covalent crosslinking,Limited thermal stability,Acid-base crosslinking(,Ionic crosslinking,),第95页,95,Polymer blending,Sulfonated polymers blend with hydrophobic polymers,Improving swelling,thermal stability and methanol crossover,第96页,96
41、,Block and graft copolymers,Block copolymers,第97页,97,Interpenetrating polymer network(IPNs),According to IUPAC:,IPNs are defined as“Polymers comprising two or more networks which are at least partially interlaced on a molecular scale but not covalently bonded to each other and cannot be separated un
42、less chemical bonds are broken”.,Semi-IPNs differ from IPNs in that they are composed of one linear polymer entrapped within the network of another polymer.,IPN sIPN,-COOH,-SO3H,-COOH,-COOH,-COOH,-COOH,-COOH,-COOH,-COOH,-SO3H,-SO3H,Cross-linking,site,sIPN-SPPESK/PAA,第98页,98,Preparations-AEMs,Quarter
43、nization for anion exchange membranes,To thermal and chemical stable polymers(PS、PBI、PPO、PPS、PES、PEK、PEEK、PSU、PEI等),introducing NH4+to transport ion;,One of important methods;,Quaternization reagents,Chloromethyl reagents,季铵类,季膦类,咪唑类,吡啶类,胍类,三乙烯二胺,Lewis酸做催化剂:AlCl,3,SbCl,5,FeCl,3,SnCl,4,TiCl,4,ZnCl,2,
44、甲醛、三聚甲醛、多聚甲醛与盐酸,氯甲醚或双氯甲醚与盐酸,长链卤甲基烷基醚,第99页,99,Multi-steps,Chloromethyl+quarternization+alkalization,Typical reaction,Electrophilic substitution,Quarternization on aromatic polymers,第100页,100,Quarternization on-CH2Cl polymers,降低步骤,防止氯甲基化试剂毒害,第101页,101,Quarternization on aliphatic polymers,第102页,102,Graft of quarternized monomers,第103页,103,PVDF,CH,2,CF,2,n,FEP,CF2CF2nCF(CF3)CF2m,VBC,vinylbenzyl chloride,Quarternization on membrane surface,第104页,104,Crosslinked membranes,第105页,105,Crosslinked membranes,第106页,106,