收藏 分销(赏)

《1.2-余弦定理》导学案4.doc

上传人:仙人****88 文档编号:6377936 上传时间:2024-12-07 格式:DOC 页数:5 大小:130.50KB
下载 相关 举报
《1.2-余弦定理》导学案4.doc_第1页
第1页 / 共5页
《1.2-余弦定理》导学案4.doc_第2页
第2页 / 共5页
《1.2-余弦定理》导学案4.doc_第3页
第3页 / 共5页
《1.2-余弦定理》导学案4.doc_第4页
第4页 / 共5页
《1.2-余弦定理》导学案4.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.2 余弦定理导学案4学习目标 1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题学习过程 一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = 复习2:在ABC中,已知,A=45,C=30,解此三角形思考:已知两边及夹角,如何解此三角形呢?二自主学习 探究新知问题:在中,、的长分别为、. ,同理可得: , 新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以

2、下推论:, , 理解定理(1)若C=,则 ,这时由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例(2)余弦定理及其推论的基本作用为:已知三角形的任意两边及它们的夹角就可以求出第三边;已知三角形的三条边就可以求出其它角试试:(1)ABC中,求(2)ABC中,求三、 合作探究例1. 在ABC中,已知,求和变式:在ABC中,若AB,AC5,且cosC,则BC_例2. 在ABC中,已知三边长,求三角形的最大内角变式:在ABC中,若,求角A 四、课后作业 1、 在ABC中,已知a7,b8,cosC,求最大角的余弦值2、 在ABC中,AB5,BC7,AC8,求的值.3、已知三角形的三边长分别为3、5、7,则最大角为( ).A B C D. 在ABC中,已知三边a、b、c满足4、,则C等于 五、总结提升学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: 已知三边,求三角; 已知两边及它们的夹角,求第三边知识拓展在ABC中,若,则角是直角;若,则角是钝角;若,则角是锐角

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服