资源描述
课后作业(五十四) 随机抽样
一、选择题
1.用系统抽样法(按等距离的规则),要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( )
A.7 B.5 C.4 D.3
2.(2013·潮州调研)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )
A.6 B.8 C.10 D.12
3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )
A.7 B.15 C.25 D.35
4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250
②5,9,100,107,111,121,180,195,200,265
③11,38,65,92,119,146,173,200,227,254
④30,57,84,111,138,165,192,219,246,270
关于上述样本的下列结论中,正确的是( )
A.②、③都不能为系统抽样
B.②、④都不能为分层抽样
C.①、④都可能为系统抽样
D.①、③都可能为分层抽样
5.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )
一年级
二年级
三年级
女生
373
x
y
男生
377
370
z
A.24 B.18 C.16 D.12
二、填空题
6.(2012·湖北高考)一支田径运动队有男运动员56人,女运动员42人,现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________.
7.某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表:
产品类型
A
B
C
产品数量(件)
1 300
样本容量
130
由于不小心,表格中A、C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是________件.
8.某单位200名职工的年龄分布情况如图9-2-1所示,现要从中抽取40名职工作样本,用系统抽样法将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.
图9-2-1
三、解答题
9.一工厂生产了某种产品16 800件,它们来自甲、乙、丙三条生产线.为检验这批产品的质量,决定采用分层抽样的方法进行抽样.已知甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列,求乙生产线生产的产品数.
10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.
11.(2013·清远质检)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
解析及答案
一、选择题
1.【解析】 由系统抽样知第一组确定的号码是5.
【答案】 B
2.【解析】 设样本容量为N,则N×=6,∴N=14,
∴高二年级所抽人数为14×=8.
【答案】 B
3.【解析】 ∵青年职工与全体职工的人数比为=,
∴样本容量为7÷=15(人).
【答案】 B
4.【解析】 因为③为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对,故选D.
【答案】 D
5.【解析】 据题意知二年级女生的人数应为2 000×0.19=380(人),故一年级共有人数750人,二年级共有750人.
这两个年级均应抽取64×=24(人),
则应在三年级抽取的学生人数为64-24×2=16(人).
【答案】 C
二、填空题
6.【解析】 设抽取的女运动员有x人,则=,解得x=6.
【答案】 6
7.【解析】 设样本的总量为x,则×1 300=130,∴x=300.
∴A产品和C产品在样本中共有300-130=170(件).
设C产品的样本容量为y,
则y+y+10=170,∴y=80.
∴C产品的数量为×80=800.
【答案】 800
8.【解析】 由分组可知,抽号的间隔为5,
又因为第5组抽出的号码为22,
所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.
40岁以下的年龄段的职工数为200×0.5=100,
则应抽取的人数为×100=20(人).
【答案】 37 20
三、解答题
9.【解】 因为甲、乙、丙三条生产线抽取的个体数依次组成一个等差数列.则可设三项分别为a-x,a,a+x.
故样本容量为(a-x)+a+(a+x)=3a,
因此每个个体被抽到的概率为=.
所以乙生产线生产的产品数为=5 600.
10.【解】 总体容量为6+12+18=36.
当样本容量是n时,由题意知,系统抽样的间隔为,
分层抽样的比例是,抽取的工程师人数为×6=,技术员人数为×12=,技工人数为×18=.
所以n应是6的倍数,36的约数,即n=6,12,18.
当样本容量为(n+1)时,总体容量是35人,系统抽样的间隔为,又必须是整数,
所以n只能取6,即样本容量为n=6.
11.【解】 (1)因为在20至40岁的58名观众中有18名观众收看新闻节目,在大于40岁的42名观众中有27名观众收看新闻节目.
所以,经直观分析,收看新闻节目的观众与年龄是有关的.
(2)应抽取大于40岁的观众人数为×5=3(名).
(3)用分层抽样方法抽取的5名观众中,20至40岁的有2名(记为Y1,Y2),大于40岁的有3名(记为A1,A2,A3).5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.
设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:
Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3.
故所求概率为P(A)==.
4
展开阅读全文