1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1如图,已知一组平行线abc,被直线m、n所截,交点分
2、别为A、B、C和D、E、F,且AB1.5,BC2,DE1.8,则EF( )A4.4B4C3.4D2.42一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()ABCD3计算:x(1)的结果是()ABx+1CD4已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )ABCD5方程的根是( )Ax=2Bx=0Cx1=0,x2=-2D x1=0,x2=26在平面直角坐标系中,开口向下的抛物线yax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B (0,3),对称轴是直线x= -1则下列结论正确的是( )Aac0Bb24ac0Cabc0D当-3x1时,y0
3、7如图,点在上,则的半径为( )A3B6CD128生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件如果全组共有x名同学,则根据题意列出的方程是( )Ax(x+1)=182Bx(x+1)=182Cx(x1)=182Dx(x1)=18229二次函数y=ax2+bx+c(a0)和正比例函数y=x的图象如图所示,则方程ax2+(b)x+c=0(a0)的两根之和( )A大于0B等于0C小于0D不能确定10通过对一元二次方程全章的学习,同学们掌握了一元二次方程的三种解法:配方法、公式法、因式分解法,其实,每种解法都是把一个一元二次方程转化为两个一元一次方程来解,体现的基本
4、思想是( )A转化B整体思想C降次D消元11O的半径为5cm,弦AB/CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A1 cmB7cmC3 cm或4 cmD1cm 或7cm12正比例函数y2x和反比例函数的一个交点为(1,2),则另一个交点为()A(1,2)B(2,1)C(1,2)D(2,1)二、填空题(每题4分,共24分)13广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度(米)关于水珠与喷头的水平距离(米)的函数解析式是水珠可以达到的最大高度是_(米)14定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征
5、数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_.15在 中, , ,点D在边AB上,且 ,点E在边AC上,当 _时,以A、D、E为顶点的三角形与 相似16二次函数的最大值是_17如图,抛物线向右平移个单位得到抛物线_18如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_三、解答题(共78分)19(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘
6、制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率(书画、器乐、戏曲、棋类可分别用字幕表示)20(8分)解方程:x2+2x=121(8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45,底部点C的俯角为30,求楼房CD的高度(17)22(10分) “道路千万条,安全第一条”,中华人民共和国道路交通管理条例规定:“小汽车在城市街道上的行驶
7、速度不得超过”,一辆小汽车在一条城市街道上由西向东行驶,在据路边处有“车速检测仪”,测得该车从北偏西的点行驶到北偏西的点,所用时间为(1)试求该车从点到点的平均速度(结果保留根号);(2)试说明该车是否超速23(10分)已知:如图(1),射线AM射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DEEC (1)求证:ADEBEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)当 AD+DE=AB=时设AE=m,请探究:BEC的周长是否与m值有关?若有关,请用
8、含有m的代数式表示BEC的周长;若无关,请说明理由24(10分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小 明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老师放入了多少个红色小球.25(12分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间
9、的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?26今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元请解答以下问题:(1)填空:每天可售出书 本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得37
10、50元的利润,应涨价多少元?参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用平行线分线段成比例定理对各选项进行判断即可【详解】解:abc,,AB1.5,BC2,DE1.8, , EF=2.4故选:D【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键2、B【分析】先由三视图得出圆柱的底面直径和高,然后根据圆柱的体积=底面积高计算即可.【详解】解:由三视图可知圆柱的底面直径为,高为,底面半径为,故选B【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左
11、视图,能看到的线画实线,被遮挡的线画虚线.3、C【分析】直接利用分式的性质化简进而得出答案【详解】解:原式故选:C【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.4、C【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为,高为,从而可得出面积【详解】解:由题意可得出圆的半径为1,ABC为正三角形,AO=1,BD=CD,AO=BO,故选:C【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键5、C【解析】试题解析:x(x+1)=0,x=0或x+1=0,解得x1=0,x1=-1故选C
12、6、D【分析】根据二次函数图象和性质逐项判断即可【详解】解:抛物线yax2+bx+c的图象开口向下,与y轴交于点B(0,3),a0,c0,ac0,故A选项错误;抛物线yax2+bx+c与x轴有两个交点,b24ac0,故B选项错误;对称轴是直线x= -1,当x= -1时,y0,即abc0,故C选项错误;抛物线yax2+bx+c对称轴是直线x= -1,与x轴交于A(1,0),另一个交点为(-3,0),当-3x1时,y0,故D选项正确故选:D【点睛】本题考查二次函数的图象和性质熟练掌握二次函数的图象和性质是解题的关键7、B【分析】连接OB、OC,如图,根据圆周角定理可得,进一步即可判断OCB是等边三
13、角形,进而可得答案.【详解】解:连接OB、OC,如图,则OB=OC,OCB是等边三角形,OB=BC=6.故选:B.【点睛】本题考查了圆周角定理和等边三角形的判定和性质,属于基础题型,熟练掌握上述性质是解题关键.8、C【解析】试题分析:先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键9、A【解析】试题分析:设ax2+bx
14、+c=1(a1)的两根为x1,x2,由二次函数的图象可知x1+x21,a1,设方程ax2+(b)x+c=1(a1)的两根为a,b再根据根与系数的关系即可得出结论设ax2+bx+c=1(a1)的两根为x1,x2, 由二次函数的图象可知x1+x21,a1, 1设方程ax2+(b)x+c=1(a1)的两根为a,b,则a+b=+, a1, 1,a+b1考点:抛物线与x轴的交点10、C【分析】根据“每种解法都是把一个一元二次方程转化为两个一元一次方程来解”进行判断即可.【详解】每种解法都是把一个一元二次方程转化为两个一元一次方程来解,也就是“降次”,故选:C.【点睛】本题考查一元二次方程解法的理解,读懂
15、题意是关键.11、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心同侧时,如图,过点O作OFCD,垂足为F,交AB于点E,连接OA,OC,ABCD,OEAB,AB=8cm,CD=6cm,AE=4cm,CF=3cm,OA=OC=5cm,EO=3cm,OF=4cm,EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图,过点O作OEAB于点E,反向延长OE交AD于点F,连接OA,OC,ABCD,OFCD,AB=8cm,CD=6cm,AE=4cm,CF=3cm,OA=OC=5cm,EO=3cm,OF=4cm,EF
16、=OF+OE=7cm故选D【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况12、A【详解】正比例函数y=2x和反比例函数 y= 的一个交点为(1,2),另一个交点与点(1,2)关于原点对称,另一个交点是(-1,-2)故选A二、填空题(每题4分,共24分)13、10【解析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】解:,当x=2时,y有最大值10,故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.14、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,
17、化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.15、【解析】当时,A=A,AEDABC,此时AE=;当时,A=A,ADEABC,此时AE=;故答案是:.16、1【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值1故答案为1【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.17、【分析】先确定抛物线的顶点坐标
18、为(0,2),再利用点平移的规律得到点(0,2)平移后所得对应点的坐标为(1,2),然后根据顶点式可得平移后的抛物线的解析式【详解】解:抛物线的顶点坐标为(0,2),把点(0,2)向右平移1个单位所得对应点的坐标为(1,2),平移后的抛物线的解析式是:;故答案为【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式18、1【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O
19、,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,DE是ABC的中位线,BC2DE, 点D坐标为(4,3),OD5,RtABO中,OEAB42,当O,E,D在同一直线上时,DE的最小值等于ODOE3,BC的最小值等于1,故答案为:1【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理三、解答题(共78分)19、(1)(人);(2)详见解析;(3)【解析】(1)
20、由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可【详解】解:(1)本次随机调查的学生人数为(人);(2)书画的人数为(人),戏曲的人数为(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为(人);(4)列表得: 共有种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,恰好抽到“器乐”和“戏曲”类的概率为【点睛】本题考查的是用列表法或画树状图法求概率的知识解题关键在于注意概率所求情况数
21、与总情况数之比20、x1=1+,x2=1【解析】利用配方法解一元二次方程即可.解:x2+2x=1,x2+2x+1=1+1,(x+1)2=2,x+1=,x1=1+,x2=1【详解】请在此输入详解!21、32.2m【详解】试题分析:首先分析图形,根据题意构造直角三角形本题涉及多个直角三角形,应利用其公共边构造关系式求解试题解析:如图,过点B作BECD于点E,根据题意,DBE=25,CBE=30ABAC,CDAC,四边形ABEC为矩形,CE=AB=12m,在RtCBE中,cotCBE=,BE=CEcot30=12=12,在RtBDE中,由DBE=25,得DE=BE=12CD=CE+DE=12(+1)
22、32.2答:楼房CD的高度约为32.2m考点:解直角三角形的应用仰角俯角问题22、(1);(2)没有超过限速【分析】(1)分别在、中,利用正切求得、的长,从而求得的长,已知时间路程则可以根据公式求得其速度(2)将限速与其速度进行比较,若大于限速则超速,否则没有超速此时注意单位的换算【详解】解:(1)在中,在中,小汽车从到的速度为(2),又,小汽车没有超过限速【点睛】本题考查了解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键23、(1)详见解析;(2)详见解析;(3)的周长与m值无关,理由详见解析【分析】(1)由直角梯形ABCD中A为直角,得到三角形ADE为直角三角形,可得出
23、两锐角互余,再由DE与EC垂直,利用垂直的定义得到DEC为直角,利用平角的定义推出一对角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得证;(2)延长DE、CB交于F,证明ADEBFE,根据全等三角形的性质得到DE=FE,AD=BF由CEDE,得到直线CE是线段DF的垂直平分线,由线段垂直平分线的性质得DC=FC即可得到结论;(3)BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=a,表示出DE在直角三角形ADE中,利用勾股定理列出关系式,整理后记作,由ABAE=EB,表示出BE,根据(1)得到:ADEBEC,由相似得比例,将各自表示出
24、的式子代入,表示出BC与EC,由EB+EC+BC表示出三角形EBC的周长,提取am后,通分并利用同分母分式的加法法则计算,再利用平方差公式化简后,记作,将代入,约分后得到一个不含m的式子,即周长与m无关【详解】(1)直角梯形ABCD中,A=90,ADE+AED=90,又DECE,DEC=90,AED+BEC=90,ADE=BEC,又A=B=90,ADEBEC;(2)延长DE、CB交于F,如图2所示ADBC,A=EBF,ADE=FE是AB的中点,AE=BE在ADE和BFE中,A=EBF,ADE=F,AE=BE,ADEBFE,DE=FE,AD=BFCEDE,直线CE是线段DF的垂直平分线,DC=F
25、CFC=BC+BF=BC+AD,AD+BC=CD(3)BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=AB=a,得:DE=ax在RtAED中,根据勾股定理得:AD2+AE2=DE2,即x2+m2=(ax)2,整理得:a2m2=2ax,在EBC中,由AE=m,AB=a,得:BE=ABAE=am由(1)知ADEBEC,即,解得:BC,EC,BEC的周长=BE+BC+EC=(am)=(am)(1)=(am),把代入得:BEC的周长=BE+BC+EC2a,则BEC的周长与m无关【点睛】本题是相似形综合题,涉及的知识有:相似三角形的判定与性质,勾股定理,平行线的判定与性质,分式的化简求值,利
26、用了转化及整体代入的数学思想,做第三问时注意利用已证的结论24、(1)P=;(2)加入了5个红球【分析】(1)利用列表法表示出所有可能,进而得出结论即可;(2)根据概率列出相应的方程,求解即可.【详解】(1)列表如图,黑1黑2红黑1/(黑1,黑2)(黑1,红)黑2(黑2,黑1)/(黑2,红)红(红,黑1)(红,黑2)/一共有6种等可能事件,其中颜色不同的等可能事件有4种,颜色不同的概率为P=(2)由图表可得摸到红球概率为设加入了x个红球=解得x=5经检验x=5是原方程的解答:加入了5个红球。【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B
27、的结果数目m,然后利用概率公式计算事件A或事件B的概率25、(1)应该多种5棵橙子树;(2)增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.【分析】(1)根据题意设应该多种x棵橙子树,根据等量关系果园橙子的总产量要达到60375个,列出方程求解即可;(2)根据题意设增种y棵树,就可求出每棵树的产量,然后求出总产量,再配方即可求解【详解】(1)设应该多种x棵橙子树,根据题意得:(100+x)(600-5x)=60375, 解得:,(不合题意,舍去)答:应该多种5棵橙子树.(2)设果园橙子的总产量为y个,根据题意得:.答:增种10棵橙子树,可以使果园橙子的总产量最多.最多为605
28、00个.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,注意配方法的运用26、(1)(30010x)(2)每本书应涨价5元【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(30010x)本;(2)根据每本图书的利润每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)每本书上涨了x元,每天可售出书(30010x)本故答案为30010x(2)设每本书上涨了x元(x10),根据题意得:(4030+x)(30010x)=3750,整理,得:x220x+75=0,解得:x1=5,x2=15(不合题意,舍去)答:若书店想每天获得3750元的利润,每本书应涨价5元