资源描述
解析法求解架空线的不平衡张力(用Excel程序)
四川安岳供电公司 李荣久
本专题的内容原已根据编写情况分次上传,后来陆续发现有一些错漏并进行了更改。为了使对本专题有兴趣的同行比较系统地了解相关内容,把个人在学习中的一些体会集合为一篇重新上传,并免财富值参阅,希望能给从事电力线路设计、建设和管理工作的同行提供一点参考。
本文的计算公式均源于邵天晓老师著《架空送电线路的电线力学计算(第二版)》,在编写初稿时邵老师还用手机短信向笔者提示应用其书中的等效张力悬链线公式,我对邵老师是非常敬佩和感激的。
另外,在2012年上传的《电力线路资料简编》中,计算风压比载的公式按照现行规范应改为
式中风压比载g4的单位为N/m.mm²,其余符号与本文第二章一相同。
由于个人能力所限,如发现文中有不妥之处,欢迎提出宝贵意见。
目 录
第一章 概述
一、不平衡张力的概念与计算方法简述
二、Microsoft Excel工作表在线路计算中的应用
三、导线的断线张力
四、导线的不平衡张力
第二章 导线和地线的不平衡张力计算的理论基础
一、导线的机械物理特性
二、导线的单位荷载
三、导线张力弧垂的精确计算
四、导线张力弧垂的近似计算
五、计算架空线不平衡张力时的状态方程式
六、按架空线长度的近似公式计算的档距变化与导线张力的关系
第三章 不均匀覆冰或不同时脱冰时不平衡张力计算
一、不均匀覆冰或不同时脱冰时的几种关系
二、不均匀覆冰或不同时脱冰时不考虑杆塔挠度的不平衡张力求解方法
三、不均匀覆冰或不同时脱冰时考虑杆塔挠度的不平衡张力求解方法
第四章 固定型横担单根导线线路断线张力的计算
一、断线张力的求解方程
二、断线张力的计算机求解方法
第五章 转动型横担线路断线张力的计算
一、断线张力的求解方程
二、断线张力的计算机试凑求解方法
第六章 相分裂导线断线张力的计算
一、断线张力的求解方程
二、相分裂导线断线张力的求解方法
第七章 地线支持力的计算
一、电杆的刚度
二、电杆的强度和挠度
三、地线支持力的计算
四、地线支持力的计算机试凑求解方法
第八章 导线从悬垂线夹松落时的不平衡张力
一、各档的初始张力
二、导线松落后各档张力的求解方程
三、导线松落后各档张力的求解方法
第九章 有一个集中荷载时的不平衡张力
一、各档的初始张力
二、加一个集中荷载后各档张力的求解方程
三、加一个集中荷载后各档张力的求解方法
附录:用Excel程序求导线断线张力与图解法的比较
参考文献
第一章 概 述
一、不平衡张力的概念与计算方法简述
凡杆塔左右两邻档因架空线张力不等而承受的张力差,均称为不平衡张力。断线杆塔所承受的断线张力,属事故情况下的不平衡张力;线路中正常运行、安装、检修情况下,也都会使直线杆塔承受不平衡张力,称为正常情况下的不平衡张力;由事故断导线后由导线的不平衡张力导致地线产生反作用的不平衡张力,称为地线支持力。计算架空线的不平衡张力在线路的设计、施工、运行、检修和事故分析中都是不可或缺的工作。
在现有的书籍资料中,计算不平衡张力常用的方法是图解法和利用图表的简化计算法。对于可以求得比较精确的结果的解析法,需用计算机求解,一般只是提出原则或简单介绍,具体的计算需要由专业设计单位通过编制程序来完成。
图解法可以求出发生不平衡张力情况时各档的张力和各直线杆塔承受的不平衡张力,因为要经过计算、作图和图解三个步骤,工作量大,假设数据时还需要足够的经验才能较快地得出结果。计算公式、作图质量和读图准确性都是影响图解准确性的因素。仅以作图来说,架空线路的档距一般都不是相等的,为了减少工作量,当耐张段档距和高差相差不大时,选取代表档距和不考虑高差的影响,造成人为误差。在作好计算图后,图解过程也是一个试凑过程,要假设不同的数据进行计算,即使用优选法,其计算的工作量也是不可小觑的。
利用图表的简化计算法也是以代表档距或某一档的档距进行计算的,没有考虑实际的档距和悬挂点高差的变化,也会造成误差。计算断线张力的衰减系数法的系数是以杆塔未发生挠曲的条件计算的,不能用于无地线、柔度大的直线杆塔上,且只能求得与断线点相邻的一档的张力。计算地线最大和最小支持力的支持力系数通用曲线只能用于钢绞线架设的地线,而实际采用的地线的种类还有其它复合型绞线,如铝包钢绞线,大钢比的钢芯铝绞线,OPGW复合光缆等,都需要采用其它方法计算。
用计算机编制程序求解架空线的不平衡张力的方法可以求得准确的结果,是设计院普遍采用的方法。因为编制程序需要程序设计的专业知识,在基层从事电力线路工作的专业技术人员能够应用程序设计的很少,使这种方法难于普及。
鉴于上述原因,需要寻求一种既有较高的准确性又便于普及应用的方法。
二、Microsoft Excel工作表在线路计算中的应用
现在,线路的设计和施工单位都普遍使用了计算机。我们对计算机中配置的常用程序进行了研究,找到了用Microsoft Excel工作表计算架空线的不平衡张力的方法,其优点是:(1)应用方便,可以象使用计算器一样输入公式,而通过引用或复制使输入的公式被重复多次使用,使其计算效率远远高于计算器;(2)适用于不同的导线和地线类型,计算同一种情况的导线或地线的不平衡张力时,只要在Microsoft Excel工作表中进行了一次导线或地线的计算,在导线或地线的类型或规格、线路的档距或悬挂点高差、温度、杆塔挠度等条件变化时,只需将有同一计算情况的工作表进行复制后,粘贴到适当的空白位置,用改变条件后的基础数据代替原来的数据,依法进行试凑等操作,计算结果所显示的就是按新的数据求得的结果。(3)计算结果的显示数据的形式和精确度可以在计算时根据需要通过单元格式设定。(4)不需要进行程序设计,从事线路工程人员只要具有使用Microsoft Excel工作表的经验就能比照例题应用。
Excel 是由微软公司开发的一种电子表格程序。应用Microsoft Excel工作表时,必须采用它的运算符号和函数符号,这些符号与数学公式中所用的符号在形式或书写方式上都有一些差别。表1-1是用于线路计算的常用符号的比较。
从表1-1可以看出,在Excel工作表中的函数都用大写字母,其后的x无论是数字或计算公式都必须放在括号“()”内。此外,用Excel进行线路计算时,用到的函数还有:RADIANS(x)—将角度转换为弧度;DEGREES(x)—将弧度转换为角度; SUM—求和(参数表); IF—条件函数(条件,条件成立时的返回值,条件不成立时的返回值)等。注意圆周率π用PI()输入,括号内不能有任何数值。
表1-1 线路计算常用数学符号与Excel用计算符号的比较表
名 称
等于
加
减
乘
除
乘方
开方
在数学公式中
=
+
-
× •
÷ /
ax
a1/x
在Excel工作表中
=
+
-
*
/
a^x
a^(1/x)
名 称
正弦
余弦
正切
双曲正弦
双曲余弦
双曲正切
在数学公式中
sinx
cosx
tanx
sinhx (shx)
coshx (chx)
tanhx (thx)
在Excel工作表中
SIN(x)
COS(x)
TAN(x)
SINH(x)
COSH(x)
TANH(x)
名 称
反正弦
反余弦
反正切
反双曲正弦
反双曲余弦
反双曲正切
在数学公式中
Sin-1x
cos-1x
tan-1x
sinh-1x (sh-1x)
cosh-1x (ch-1x)
tanh-1x (th-1x)
在Excel工作表中
ASIN(x)
ACOS(x)
ATAN(x)
ASINH(x)
ACOSH(x)
ATANH(x)
名 称
平方根
指数函数
自然对数
10底对数
对数
圆周率
在数学公式中
ex
lnx
lgx
logbx
π
在Excel工作表中
SORT(x)
EXP(x)
LN(x)
LOG10(x)
LOG(x,b)
PI()
创建公式时最常见的一些错误包括:在公式的开头忘记输入等号 (=),在等号 (=) 前面插入了一个空格等。当工作表中出现错误消息时,就要找出并更正公式中的错误。常见错误消息有:########—列宽度不够,#NUM!—公式中引用的某数字有问题,#NAME—未知函数,#DIV/0!—被零除,#VALUE!—参数不正确,#REF!—单元格引用无效。当显示列宽度不够时,可以调整字号、设置显示数的形式或设置列宽解决,显示其它错误信息时需要检查输入数据和公式并予以更正。
在Excel程序中,函数和算术运算的优先级与数学公式一样,从高到低排列为:(1)函数;(2)乘方与开方;(3)乘与除;(4)加与减。如果要先计算优先级低的数据,需要用括号来规定。多重括号都只用圆括号一种形式,与数学公式中采用方括号作为中括号和花括号作为大括号等不同,在输入数学公式时要特别注意。
为了准确输入数据和计算公式及以后应用方便,在工作表最左一列以合理的顺序输入设计条件和计算内容的名称或符号与单位,第二列起为与第一列对应的已知数据和计算结果。
例如,计算,l为100、200、300,对应的h为15、24、40。在Excel工作表中计算时,首先直接输入l和h的原始数据到选定的单元格中,;第二步,以等号“=”开始,用B列的数字按照公式编辑栏的符号和顺序输入公式,按Enter键结束,其中B2和B1为h和l 在表中的纵、横座标,输入时按鼠标器左键选定;第三步,复制公式,将鼠标指到B3,按鼠标器左键选定后,移动鼠标到选定单元格右下角,当鼠标变为“+”形时,按住鼠标器左键,向右拖动,至C3、D3都被框住时,放开鼠标器左键,就显示出第二、三个cosφ的数值,全部计算完成。这时如果用鼠标器左键选定B3单元格,将显示为下列格式。如果公式输入不正确,Excel会提示,可以在fx栏(公式编辑栏)检查更改。
fx
=1/(1+(B2/B1)^2)^0.5或 =1/SQRT(1+(B2/B1)^2)
A
B
C
D
E
F
G
H
I
1
l(m)
100
200
300
2
h(m)
15
24
40
3
cosφ
0.98894
0.99288
0.99123
4
有些计算公式可能有几种形式,例如,若用公式计算时,在fx栏输入公式的形式为“=COS(ATAN(B2/B1))”。
用拖动鼠标的方法复制时,直接输入的数字和应用公式计算的结果要分别复制,如果同时复制,直接输入的数字会被逐栏自动加1而导致错误。 Excel程序有几个版本,有的版本不能用填充柄复制直接输入的数字,可以把数字按照输入公式的方法输入。
全表复制和粘贴的方法与Word文档的操作方法相同。
在用Microsoft Excel工作表进行线路计算时,有的情况需要采用试凑法。为了加快得出结果,改变输入数字时可以采用对分法(也称二分法)。具体做法是在输入数字时注意有标志意义的计算项目的最终结果或中间结果的变化。设输入数字的区间为[a,b],标志计算项目的计算公式为f(x),其最终结果为f(x)=0。计算步骤为:
1、计算f(a)和f(b),如果f(a)<0,f(b)>0,说明a<x<b。确定的数字区间正确。
2、取x1= (a+b)/2进行第三次计算。如果f(x1)<0,说明x1<x<b,取x2 = (x1+b)/2进行第四次计算;如果f(x1)>0,说明a <x< x1,取x2 = (x1+a)/2进行第四次计算。
3、取x2 = (x1+b)/2进行计算时,如果f(x2)>0,说明x1<x<x2,取x3 = (x1+ x2)/2进行第五次计算;如果f(x2)<0,说明x2<x<b,取x3 = (x2+ b)/2进行第五次计算。
取x2 = (x1+a)/2进行计算时,如果f(x2)<0,说明x2<x<x1,取x3 = (x1+ x2)/2进行第五次计算;如果f(x2)>0,说明a <x< x2,取x3 = (x2+ a)/2进行第五次计算。
以此类推。直到f(xn)≈0时(取定小数位时可显示为0.0、0.00、0.000等),输入的xn即为所求x。
三、导线的断线张力
运行经验指出,架空线路的断线多以短路烧断、机械损伤或撞断、拉断等形式出现。引起断线的原因,多为与线路无关的外因,外因系指枪击、飞机和船桅碰撞,矿山爆破炸伤等。除此之外,雷击、振动和超过设计值较多的风、冰荷载,以及施工与维护不良等,也有造成断线事故的。不过,大导线和地线的断线次数是较少的。
在线路设计时,如果没有考虑防范导线断线造成的各种可能,那么在运行中一旦发生了断线,就将使事故扩大,以致造成整个耐张段甚至全线路倒杆,修复工作量很大。因此,设计线路杆塔时,应考虑一根至两根导线与地线折断时的事故情况。断线的根数依杆塔的型式而定。
计算断线张力的目的,除了为杆塔的强度设计提供荷载外,还为交叉跨越档的限距校验提供张力,以便计算弧垂。此外,在线路运行中也用以分析实际发生的断线事故。
对于非直线型杆塔(如耐张杆塔、转角杆塔等),当邻档断线时,杆塔所受的不平衡张力,就是另一侧导线在事故前的正常张力值,因为这些杆塔一般都是刚性的,导线的悬挂点可以认为是不偏移的。因此本文主要研究直线杆塔的断线张力计算。
对于装设针式绝缘子和瓷横担绝缘子的直线杆塔,也不需要按断线情况设计,这是因为针式绝缘子的铁脚是个薄弱环节,在断线时铁脚可能被拔脱或损坏,瓷横担绝缘子的强度比针式绝缘子的铁脚更低,在断线时更容易损坏。装设针式绝缘子和瓷横担绝缘子的直线杆塔,导线都是用绑线固定在绝缘子上,导线也可能在绑扎处滑出。所以,只对那些使用悬式绝缘子的直线杆塔,才需要计算断线张力。
断线张力是指架空线断线后的残余张力。断线发生以后(见图1),断线档的张力为零,而剩余各档,由于直线杆塔的挠曲和悬垂绝缘子串的偏斜,导致导线松弛,因而张力减少,故断线张力亦称残余张力。
从图1-1上看出:断线后剩余各档的残余张力不是均匀分布的,离断线档最近的杆塔所受的不平衡张力(即称断线张力,实为断线档相邻档的残余张力)最大,因而绝缘子串的偏斜角也最大。而远离断线档各杆塔的悬垂串的偏斜角,因不平衡张力的不断衰减而逐档减小。
经研究得知,剩余档距数不同,则断线张力最大值也不 图1-1 线路断线后的情况
同。剩余档数多,支持不平衡张力的杆塔多,故各杆塔分配的不平衡张力值就小,各档张力衰减得慢,残余张力相对地就大,反之剩余档距越少,其各档的残余张力就越小。若断线后只余一档时,悬垂串偏斜所引起的悬点偏移,全部促使导线松弛而弧垂大增,导线张力大大衰减,故直线杆塔所受断线张力很小。但剩余档距超过五档时,第五档之后的导线张力衰减很小。故当遇到剩余档超过五档时,工程计算中允许按五档考虑。
设计杆塔时,断线档应选在耐张段的两端档,因该档断线时,直线杆塔所受的断线张力最大。当校验跨越档的限距时,断线档应选在被校跨越档的相邻档,因该档断线时跨越档的弧垂较大。
在设计采用相分裂导线的杆塔时,如需要求断线后作用在直线杆塔上的较大不平衡张力差,可假定断线发生在靠耐张塔的一档内,且剩余档数在五档以上。当需要求断线档内剩余子导线的较大张力,以检查其安全性时,可假定断线发生在靠耐张段的中间一档内,且其两侧档数都在五档以上。
影响断线张力的因素很多,工程计算中都按断线后的稳态情况考虑。
四、导线的不平衡张力
架空线路在安装时,应使悬垂串均处在垂直位置,各直线杆塔不存在张力差,但在正常运行中由于以下几种情况,将使耐张段中各档距中的导线和地线张力相差悬殊,致使各直线杆塔承受较大的不平衡张力。
(1)耐张段中各档距长度、悬点高差相差悬殊,当气象条件变化后,引起各档张力不等。
(2)耐张段中各档不均匀覆冰或不同时脱冰时,引起各档张力不等。特别是不均匀脱冰,常常在重冰区引起断导线、倒塔、导线跳跃到横担以上等严重事故。
(3)线路检修时,采取先松下某悬点的导线后挂上某悬点的导线,造成两档张力不等,如图1-2所示(图中虚线为检修的耐张段)。
(4)耐张段中在某档进行飞车作业、绝缘梯作业等悬挂集中荷载时所引起的不平衡张力。 图1-2 线路检修时各档张力的关系
(5)高差很大的山区,尤其是重冰区的连续倾斜档中,山上侧档距和山下侧档距张力不等。
耐张杆塔的不平衡张力,有以下几种情况:
(1)由于两侧代表档距不等而产生不平衡张力;
(2)由于两侧导线或地线截面大小不同而产生不平衡张力;
(3)耐张杆塔位于两个气象区的分界处,由于温度、风速、覆冰厚度不同而产生不平衡张力。
五、地线的不平衡张力
除了导线断线时地线会产生支持力外,地线在遇到与上述导线产生不平衡张力相同的情况时,也要产生不平衡张力。在直线杆塔产生不平衡张力时,与导线比较,地线的不平衡张力有其特点。一是金具悬垂串长度较短,当直线杆两侧张力不等时,地线金具串顺线路方向偏斜较小,不平衡张力较大。二是钢筋混凝土电杆刚度小,杆塔顺线路方向偏斜较大,不平衡张力较小。铁塔刚度大,杆塔顺线路方向偏斜小,不平衡张力较大。
在下面的叙述中,为了叙述简便,除特别指明外,导线和地线统称为导线。
六、计算架空线的不平衡张力在线路工程中的应用简述
电力线路的设计要考虑在施工、运行和检修时都要保证导线、杆塔和被跨越设施的安全,在发生事故时要尽量减少损失和保证重要跨越设施的安全。因此,必须根据线路通过地区的实际情况,计算导线出现不平衡张力情况时的导线张力、弧垂和杆塔承受的不平衡张力,以确定杆塔的强度、导线悬挂点高度等参数,力求设计有较高的安全性和经济性。
例如,程思勇硕士和薛志方博士的《覆冰不平衡张力计算分析》,通过计算分析,得到对线路设计有意义的如下结论:1)增大导地线安全系数可增大覆冰不平衡张力;2)适当增加串长能够有效缓解纵向不平衡张力;3)在覆冰的地区,通过适当增加耐张段内的档距数,能明显改善覆冰不平衡张力;4)档距分布不均将有利于减小不均匀覆冰不平衡张力;5)减小挂线点之间的高差,可较有效的降低不平衡张力。
在发生事故后,通过不平衡张力计算,可以找出事故原因,采取有效的解决办法。例如,刘庆丰硕士的《输电线路不平衡张力分析和计算》,从一次不均匀覆冰导致的铁塔倒塌事故中,通过测定事故段各档导线的覆冰厚度,进行不平衡张力计算后,确定倒塔的原因是不平衡张力超过了铁塔的承载力,在此基础上提出了解决办法。
至于不均匀覆冰的重冰档和断线相邻档的对地距离和交叉跨越的校验,是设计时不可缺少的计算工作,就不必多说了。
第二章 导线和地线的不平衡张力计算的理论基础
一、导线的机械物理特性
导线的机械物理特性,一般指破坏张力、弹性系数、热膨胀系数。
(一) 导线的破坏张力
对导线作拉伸试验,将测得瞬时拉断力。利用多次测量结果,可以建立一组经验公式来计算导线的瞬时拉断力。考虑到施工和运行中导线接头、修补等因素,设计用导线破坏张力取其实测或计算瞬时拉断力Tp的95%,即 Tps=0.95Tp (2-1)
设计所取定的最大张力气象条件时导线张力的最大使用值称为最大使用张力,用Tmax表示,即
(2-2)
式中 T p —导线的瞬时拉断力,N;
T ps—导线的破坏张力,N;
Tmax—导线最低点的最大使用张力,N;
kc—导线强度安全系数。
(二)导线的弹性系数
物体的弹性系数也称为弹性模量。导线的弹性系数是指在弹性限度内,导线受拉力作用时,其应力与相对变形的比例系数,可表示为
(2-3)
式中 T—导线拉力,N;
、—导线的原长和伸长,m;
—导线的应力,即单位截面的张力,,N/mm²;
—导线的相对变形,ε=Δl/l;
A—导线的截面积,mm²;
E—导线的弹性系数,N/mm²。
(三)导线的热膨胀系数
导线温度升高1℃所引起的相对变形,称为导线的热膨胀系数,可表示为 (2-4)
式中 —温度变化引起的导线相对变形,ε=Δl/l;
—温度变化量,℃;
—导线的热膨胀系数,1/℃。
二、导线的单位荷载
作用在导线上的荷载有自重、冰重和风压。这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。在导线张力弧垂计算中,常把导线受到的机械荷载用单位荷载表示。导线单位长度的荷载称为单位荷载。常用的单位荷载有如下七种。
(一)自重荷载
由导线的质量引起的荷载称为自重荷载,自重单位荷载计算式为
p1=9.80665 m0/1000 (2-5)
式中 9.80665—重力加速度,m/s²,其近似值可取9.8、9.81或10;
m0—每千米导线的质量,kg/km;
p1—导线的自重荷载,N/m。
(二)冰重荷载
导线覆冰时,由于冰重产生的荷载称为冰重荷载。假设冰层沿导线均匀分布并成为一个空心圆柱体,冰的密度为0.9g/cm³,冰重单位荷载可按下式计算
p2=9.80660×0.9πb(b+d)/1000=0.0027728b(b+d) (2-6)
式中 b—覆冰厚度,mm;
d—导线直径,mm;
p2—导线的冰重单位荷载,N/m。
设计覆冰厚度:轻冰区取无冰、5mm或10mm,中冰区取15mm或20mm,重冰区取20mm、30mm、40mm或50mm,必要时还按稀有覆冰条件进行验算。
地线设计冰厚,除无冰区外,应较导线冰厚增加5mm。
大跨越最大设计冰厚,除无冰区外,宜较附近一般送电线路的最大设计冰厚增加5mm。
(三)导线的自重和冰重总荷载
导线的自重和冰重总单位荷载等于二者之和,即
p3 =p1 +p2 (2-7)
式中 p3—导线自重和冰重总单位荷载,N/m。
p1 、p2和p3都是垂直单位荷载。
(四)无冰时导线风压荷载
无冰时作用在导线上每米长的风压荷载称为无冰时导线风压单位荷载,计算式为
表2-1 各种风速V下的风速不均匀系数α
V( m/s)
V<20
20≤V<27
27≤V<31.5
V>31.5
α
1.0
0.85
0.75
0.70
基本风速情况 (2-8)
其它情况
式中 α—风速不均匀系数,也称档距系数,采用表2-1 所列数值;
V0—离地面或水面10m高处的基本风速,m/s;
V—设计风速,m/s;
d—导线直径,mm;
μsc—风载体型系数,当导线直径d<17 mm时、
μsc =1.2, d≥17 mm时、μsc =1.1;
μz—风压高度变化系数,按地面粗糙度类别用指数公式计算:
A类指近海海面、海岛、海岸、湖岸及沙漠地区,μz=0.794Z0.24,μz≤3.12;
B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区,μz=0. 479Z0.32,1.00≤μz≤3.12;C类指有密集建筑群的城市市区,μz=0.224Z0.44,0.74≤μz≤3.12;
D类指有密集建筑群且房屋较高的城市市区,μz=0.08Z0.60,0.62≤μz≤3.12。
Z为离地面或水面的平均高度(m):一般500~750 kV输电线路取离地面20m,330kV及以下输电线路取离地面15m,10kV及以下配电线路取离地面10m;大跨越根据实际情况确定。
θ—风向与架空线轴线间的夹角;
p4—无冰时导线风压单位荷载,N/m。
输电线路的基本风速,应按基本风速统计值选取。
330kV及以下输电线路的基本风速不应小于23.5m/s;500kV、750kV输电线路计算导、地线的张力、荷载以及杆塔荷载时,基本风速不应低于27m/s。必要时还宜按稀有风速条件进行验算。
山区送电线路的基本风速,如无可靠资料,应按附近平原地区的统计值提高10%选用。
大跨越基本风速,如无可靠资料,宜将附近平地送电线路的风速统计值换算到与大跨越线路相同电压等级陆上线路重现期下历年大风季节平均最低水位以上10m处,并增加10%,然后考虑水面影响再增加10%选用。大跨越基本风速不应低于相连接的陆上送电线路的基本风速。
雷电过电压工况,当基本风速折算到导线平均高度处其值大于等于35m/s时,风速宜取15m/s,否则取10m/s;校验导线与地线之间的距离时,应采用无风。
操作过电压工况的风速宜取基本风速折算到导线平均高度处风速的50%,且不宜低于15m/s。
安装工况采用风速10m/s。带电作业工况的风速可采用10m/s。
(五)覆冰时导线风压荷载
覆冰时导线每米长的风压荷载称为覆冰时导线风压单位荷载,计算式为
(2-9)
式中 μsc—风载体型系数,取μsc =1.2;
p5—覆冰时导线风压单位荷载,N/m;
其他符号意义同式(2-7、2-8)。
p4和p5都是水平单位荷载。
(六)无冰有风时的综合荷载
无冰有风时,导线上作用着垂直方向的荷载p1和水平方向的荷载p4,按向量合成可得无冰有风时的综合单位荷载,按下式计算
(2-10)
式中 p6—无冰有风时的综合单位荷载,N/m。
(七)有冰有风时的综合荷载
有冰有风时,综合单位荷载为垂直总单位荷载p3和覆冰时风压单位荷载p5的向量和,按下式计算
(2-11)
式中 p7—有冰有风时的综合单位荷载,N/m。
在计算成果表中,常在相关的单位荷载的脚注数字后用括号标注覆冰厚度和风速的数据:p2、p3标覆冰厚度(mm), p4、p6标风速(m/s), p5、p7左数为覆冰厚度(mm)、右数为风速(m/s)。
三、导线张力弧垂的精确计算
(一)导线的悬链线解析方程式
架空线导线悬挂点A、B间的距离与线径之比是很大的,在正常运行时荷载也基本上是沿线分布的,其悬挂形状可以认为是一条悬链线。一般都把导线的悬链线解析方程式作为精确计算导线的弧垂和张力的基础公式。取坐标如图2-1,以弧垂最低点为坐标原点,在线上取长度元dL,在dL上作用着荷载dp=pdL(p为单位长的荷载),在dL的两端分别作用着张力T1和T0,导线处于平衡状态时,T1和T的水平分力T0的代数和为0,而T1的垂直分力T0tan(α+dα)等于T的垂直分力T0 tanα与荷载pdL之和,如图2-2所示。
即
两边同乘以1-tanαtandα后移项,得
图2-1
当dL→0时,dα→0,tandα=dα→0。略去含dLtandα的项并整理之,得
(2-12) 图2-2
因为,,式(2-12)可写为
分离变量,得
为了简化公式,引入计算因数 得
将等式两边积分,得
即 (2-13)
在所取坐标条件下,有,由此得=0,所求为
在所取坐标条件下,,,得悬链线方程式为
(2-14)
设导线的档距为,悬点A(x1,y 1)、B(x2,y 2)间的高差为,则
(2-15)
由式(2-14)和(2-15)得
(2-16)
从式(2-15)和(2-16)解出x1和x2,得
(2-17)
(2-18)
档距中点 (2-19)
由图2-1可以看出,悬挂点A、B的连线至导线的距离,以平行于该连线的切线在导线上的切点Q(xM,yM)为最大,该切点的弧垂也最大。该切点的斜率,由式(2-13)得
(2-20)
导线在悬挂点的悬垂角(倾斜角)
(2-21)
(2-22)
(二)导线的张力、弧垂与线长
导线上任意一点的张力,由图2-2可见为
(2-23)
或 (2-24)
在悬挂点A、B的张力TA、TB分别为
(2-25)
即
(2-26)
(2-27)
即 (2-28)
导线最低点至悬挂点的高差称为水平弧垂。在悬挂点不等高时一个档距内有两个水平弧垂,如图2-1所示。
(2-29)
(2-30)
导线上任意一点至悬挂点连线的铅直距离称为该点的斜弧垂,简称弧垂。在图2-1所取坐标条件下,悬挂点连线的解析方程式为
所求弧垂为
(2-31)
将式(2-19)和(2-20)代入式(2-31)可求得档距中点的弧垂和最大弧垂
(2-32)
展开阅读全文