收藏 分销(赏)

中考数学专题探究 面积问题2含详细解答.doc

上传人:pc****0 文档编号:6229794 上传时间:2024-12-02 格式:DOC 页数:4 大小:56KB 下载积分:10 金币
下载 相关 举报
中考数学专题探究 面积问题2含详细解答.doc_第1页
第1页 / 共4页
中考数学专题探究 面积问题2含详细解答.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
中考数学专题----面积问题(2) 面积倍分问题 面积问题在中考中占有很重要的地位,一般情况下,计算一些基本图形的面积,可以直接运用图形的面积公式,对于一些不规则的图形面积的计算,可以对图形进行转化,这类问题虽然解题方法比较灵活多样,但难度一般不太大。但是,在中考压轴题中,有关面积的问题常常以动态的方式出现,经常与函数知识联系起来,有时还需要分类讨论。因此,对考生要求较高,在解题时,要注意分清其中的变量和不变量,并把运动的过程转化成静止的状态,做到动静结合,以静求动。 中考数学面积问题的考点主要有:(1)面积的函数关系式问题;(2)面积的最值问题;(3)面积的倍分问题。前二个考点在上次的专题中已经讲过,今天我们来探究面积的倍分问题。 一、典型例题: 1、(2007江苏扬州)如图,矩形中,厘米,厘米().动点同时从点出发,分别沿,运动,速度是厘米/秒.过作直线垂直于,分别交,于.当点到达终点时,点也随之停止运动.设运动时间为秒. (1)若厘米,秒,则______厘米; (2)若厘米,求时间,使,并求出它们的相似比; (3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围; D Q C P N B M A D Q C P N B M A (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由. 分析:问题(1)比较容易解答,问题(2)利用三角形相似的性质也容易解决,问题(3)需要利用 BM=BN=t,利用面积相等求出t和a的关系式,利用t的范围求a的取值范围,问题(4)只需要在问题(3)的基础上,让梯形PQCN的面积与梯形PMBN的面积相等即可。 解.(1), (2),使,相似比为 (3), ,即, 当梯形与梯形的面积相等,即 化简得, ,,则, (4)时,梯形与梯形的面积相等 梯形的面积与梯形的面积相等即可,则 ,把代入,解之得,所以. 所以,存在,当时梯形与梯形的面积、梯形的 面积相等. 温馨提示:本题考查与面积有关的问题,解答的关键是将梯形的面积相等转化后求解,另外,在解决这一类问题时,要善于运用数形结合的思想,把几何条件转化,建立合适的数学模型,本题就充分运用了方程的思想。 二、名题精练: B O A P M (第24题) 1、(2008年浙江丽水)如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动. (1)求线段所在直线的函数解析式; (2)设抛物线顶点的横坐标为, ①用的代数式表示点的坐标; ②当为何值时,线段最短; (3)当线段最短时,相应的抛物线上是否存在点,使△ 的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由. (第28题) 2、(2010年江苏宿迁)(本题满分12分)已知抛物线交轴于、,交轴于点,其顶点为.  (1)求、的值并写出抛物线的对称轴; (2)连接,过点作直线交抛物线的对称轴于点.求证:四边形 是等腰梯形; (第28题2) (3)问Q抛物线上是否存在点,使得△OBQ的面积等于四边形的面积的?若存在,求出点的坐标;若不存在,请说明理由. 3、(2009湖南邵阳)如图、直线l的解析式为y=-x+4, 它与x轴、y轴分相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4) (1)求A、B两点的坐标; (2)用含t的代数式表示△MON的面积S1; (3)以MN为对角线作矩形OMPN,记 △MPN和△OAB重合部分的面积为S2 ;   当2<t≤4时,试探究S2 与之间的函数关系; x y l m O A M N B P x y l m O A M N B P E F   ‚在直线m的运动过程中,当t为何值时,S2 为△OAB的面积的?   答案部分: 1、解:(1)设所在直线的函数解析式为, ∵(2,4), ∴, , ∴所在直线的函数解析式为. (2)①∵顶点M的横坐标为,且在线段上移动, ∴(0≤≤2). ∴顶点的坐标为(,). ∴抛物线函数解析式为. ∴当时,(0≤≤2). ∴点的坐标是(2,). ② ∵==, 又∵0≤≤2, ∴当时,PB最短. (3)当线段最短时,此时抛物线的解析式为.……………(1分) 假设在抛物线上存在点,使. 设点的坐标为(,). ①当点落在直线的下方时,过作直线//,交轴于点, ∵,, ∴,∴,∴点的坐标是(0,). D O A B P M C E ∵点的坐标是(2,3),∴直线的函数解析式为. ∵,∴点落在直线上. ∴=. 解得,即点(2,3). ∴点与点重合. ∴此时抛物线上不存在点,使△与△的面积相等. ②当点落在直线的上方时, 作点关于点的对称称点,过作直线//,交轴于点, ∵,∴,∴、的坐标分别是(0,1),(2,5), ∴直线函数解析式为. ∵,∴点落在直线上. ∴=. 解得:,. 代入,得,. ∴此时抛物线上存在点, 使△与△的面积相等. 综上所述,抛物线上存在点, 使△与△的面积相等. 2、解:(1)求出:,,抛物线的对称轴为:x=2 (2) 抛物线的解析式为,易得C点坐标为(0,3),D点坐标为(2,-1) 设抛物线的对称轴DE交x轴于点F,易得F点坐标为(2,0),连接OD,DB,BE ∵OBC是等腰直角三角形,DFB也是等腰直角三角形,E点坐标为(2,2), ∴∠BOE= ∠OBD= ∴OE∥BD ∴四边形ODBE是梯形 在和中, OD= ,BE= ∴OD= BE ∴四边形ODBE是等腰梯形 (3) 存在, 由题意得: 设点Q坐标为(x,y), 由题意得:= ∴ 当y=1时,即,∴ , , ∴Q点坐标为(2+,1)或(2-,1) 当y=-1时,即, ∴x=2, ∴Q点坐标为(2,-1) 综上所述,抛物线上存在三点Q(2+,1),Q (2-,1) ,Q(2,-1) 使得=. E F Q1 Q3 Q2 3、解:(1)当时,;当时,.; (2), (3)①当时,易知点在的外面,则点的坐标为, 点的坐标满足即, 同理,则, 所以 ; ②当时,, 解得两个都不合题意,舍去; 当时,,解得, 综上得,当或时,为的面积的.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 应用文书 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服