资源描述
二次函数
最大面积是多少
一、学生知识状况分析
学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。
学生的活动经验基础:通过第七节的学习,学生已经经历了由实际问题转化为数学问题的过程,对解决这类问题有了处理经验。
二、教学任务分析
本节课将进一步利用二次函数解决问题,是上一节内容的进一步升华和提高,具体的教学目标如下:
(一)知识与技能
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.
(二)过程与方法
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.
(三)情感态度与价值观
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.
3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.
教学重点
1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.
教学难点
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积的问题.
三、教学过程分析
本节课分为五个环节,分别是:创设问题情境引入新课、归纳升华、课堂练习活动探究、课时小结、课后作业
第一环节 创设问题情境,引入新课
上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求二次函数的最大值,实际上就是利用二次函数来解决实际问题.解决这类问题的关键是要审清题意,明确要解决的是什么,分析问题中各个量之间的关系,建立数学模型。在此基础上,利用我们所学过的数学知识,逐步得到问题的解答过程.
本节课我们将继续利用二次函数解决最大面积的问题.
活动内容:由四个实际问题构成
1.问题一:如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.
(1)设长方形的一边AB=x m,那么AD边的长度如何表示?
(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?
问题一的设计目的:
对于这个问题,教师将其作为例题,不论是对问题本身的分析,还是具体的解法过程,都将作出细致、规范的讲解和示范。具体的过程如下:
分析:(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得即.所以AD=BC=(40-x).
(2)要求面积y的最大值,即求函数y=AB·AD=x·(40-x)的最大值,就转化为数学问题了.
下面请小组开始讨论并写出解题步骤.
(1)∵BC∥AD,
∴△EBC∽△EAF.∴.
又AB=x,BE=40-x,
∴.∴BC=(40-x).
∴AD=BC=(40-x)=30-x.
(2)y=AB·AD=x(30-x)=-x2+30x
=-(x2-40x+400-400)
=-(x2-40x+400)+300
=-(x-20)2+300.
当x=20时,y最大=300.
即当x取20m时,y的值最大,最大值是300m2.
2.问题二:将问题一变式:“设AD边的长为x m,则问题会怎样呢?”
解:∵DC∥AB,
∴△FDC∽△FAE.
∴.
∵AD=x,FD=30-x.
∴.
∴DC=(30-x).
∴AB=DC=(30-x).
y=AB·AD=x·(30-x)
=-x2+40x
=-(x2-30x+225-225)
=-(x-15)2+300.
当x=15时,y最大=300.
即当AD的长为15m时,长方形的面积最大,最大面积是300m2.
活动目的:
在活动解决之初(末),揭示该问题与问题一的关系
3.问题三:对问题一再变式
如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上,BC在斜边上.
(1).设矩形的一边BC=xm,那么AB边的长度如何表示?
(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?
活动目的:
有了前面两题作基础,这个问题可以留给学生自己解决,作为练习
4.问题四:
某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
分析:x为半圆的半径,也是矩形的较长边,因此x与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy+x2最大,而由于4y+4x+3x+πx=7x+4y+πx=15,所以y=.面积S=πx2+2xy=πx2+2x·=πx2+=-3.5x2+7.5x,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.
解:∵7x+4y+πx=15,
∴y=.
设窗户的面积是S(m2),则
S=πx2+2xy
=πx2+2x·
=πx2+
=-3.5x2+7.5x
=-3.5(x2-x)
=-3.5(x-)2+.
∴当x=≈1.07时,
S最大=≈4.02.
即当x≈1.07m时,S最大≈4.02m2,此时,窗户通过的光线最多.
实际教学效果:
问题四中的数量关系,较前面3个问题,处理起来比较繁琐,教师要给予学生及时的指导和帮助。
第二环节 归纳升华
活动内容:
同学们能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.
活动目的:
通过前面例题的学习和感受,学生讨论交流,在教师的帮助下归纳出:
基本流程为:理解题目 分析已知量与未知量 转化为数学问题.
解决此类问题的基本思路是:
(1)理解问题;
(2)分析问题中的变量和常量以及它们之间的关系;
(3)用数学的方式表示它们之间的关系;
(4)做函数求解;
(5)检验结果的合理性,拓展等.
第三环节 课堂练习,活动探究
活动内容:
1. 用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?
M
A
B
C
D
P
Q
R
2. 正方形ABCD边长5cm,等腰三角形PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一直线l上,当C、Q两点重合时,等腰△PQR以1cm/s的速度沿直线l向左方向开始匀速运动,ts后正方形与等腰三角形重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值;
(2)当t=3s时,求S的值;
(3)当5s≤t≤8s时,求S与t的函数关系式,并求S的最大值。
第四环节 课时小结
本节课我们进一步学习了用二次函数知识解决最大面积的问题,增强了应用数学知识的意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学建模思想和数学知识的应用价值.
教学反思.
培养学生的数学应用意识,是新课程的重要目标之一。为此,教材中选用了一些范围更加广泛、内容更加贴近实际的应用问题。很明显,新课程在降低一些要求(如根式的运算)的同时,对应用数学解决实际问题的要求有所提高。
毫无疑问,解应用问题确实比较难。解决实际问题的过程,就是寻找实际问题和数学之间联系的过程,也就是建立数学模型的过程。由于描述实际问题的语言灵活而丰富,加之有些问题所反映的事理学生并不是非常清楚,这就很容易使学生在建立数学模型的过程中出现困难。具体地说,这些困难包括读题、理解题意、把实际问题转化为数学问题,最主要的是“把实际问题转化为数学问题”这一环节。另外,解决实际问题经常需要进行估算,有时有多个结果或结果不确定,需要对解进行分析。所有这些,都是造成困难的原因。
因此,应用问题比较难,这是由数学应用内容本身所决定的,并不是教材有意识地想要难为学生和教师。
二次函数有一个最值点,所以它被广泛地用来解决一些单变量的最优化问题,教材也安排了这样的应用问题。也就是说,教材中的应用问题是随着知识的线索而展开的,它的难度是与知识的特点相适应的。
8
展开阅读全文