圆周运动的周期性(4)圆周运动的周期性利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。图3-6在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。例5:如图3-6所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h处沿OB方向水平抛出一个小球,要使球与盘只碰一次,且落点为B,则小球的初速度v_,圆盘转动的角速度_。【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。【解析】小球做平抛运动,在竖直方向上:hgt2则运动时间t又因为水平位移为R所以球的速度vR在时间t内,盘转过的角度n2,又因为t则转盘角速度:2n(n1,2,3)【总结】上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。图3-7例6:如图3-7所示,小球Q在竖直平面内做匀速圆周运动,当Q球转到图示位置时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点相碰,则Q球的角速度应满足什么条件?