1、 抽屉问题经典习题 1木箱里装有红色球个、黄色球个、蓝色球个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?(4)2一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?(16)3体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿个球,至多拿个球,问至少有几名同学所拿的球种类是一致的?(6) 4某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2个人,又知参赛者中任何10人中必有男生,则参赛男生的人生_人。(46) 5.证明:从1,3,5,99中任选26个数,其中必有两个数的和是100。(25
2、个抽屉) 6.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有_人带苹果。(46) 7.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成_堆。 解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1筐。 8.有黑色、白色、蓝色
3、手套各5只(不分左右手),至少要拿出_只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。(10) 9从1、2、3、4、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? 10.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?(是) 11一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?(9) 12.在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8
4、解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4。把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。显然,以这三个点为顶点的三角形的面积不超过1/8。 13在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。 解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果,即至少有一段有两棵或两棵以上的树. 14六年级有100名学生,他们都订阅甲、乙、丙三种杂志
5、中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。订一种杂志有:订甲、订乙、订丙3种情况;订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;订三种杂志有:订甲乙丙1种情况。总共有331=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为1001472。根据抽屉原理2,至少有14115(人)所订阅的报刊种类是相同的。 15篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的? 分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4610(种)。将这10种搭配作为10个“抽屉”。8110=81(个)。根据抽屉原理2,至少有819(个)小朋友拿的水果相同。