收藏 分销(赏)

第二课时圆的参数方程及应用.doc

上传人:仙人****88 文档编号:6068580 上传时间:2024-11-27 格式:DOC 页数:3 大小:79.04KB
下载 相关 举报
第二课时圆的参数方程及应用.doc_第1页
第1页 / 共3页
第二课时圆的参数方程及应用.doc_第2页
第2页 / 共3页
第二课时圆的参数方程及应用.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二课时 圆的参数方程及应用一、教学目标:知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。利用圆的几何性质求最值(数形结合)过程与方法:能选取适当的参数,求圆的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:能选取适当的参数,求圆的参数方程xyOrMM0x教学难点:选择圆的参数方程求最值问题.三、教学方法:启发、诱导发现教学.四、教学过程:(一)、圆的参数方程探求1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。这就是圆心在原点、半径为r的圆的参数方程。说明:(1)参数的几何意义是OM与x轴正方向的夹角。(2

2、)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。思考交流:你能回答课本第33页的思考交流题吗? 3、若如图取PAX=,AP的斜率为K,如何建立圆的参数方程,同学们讨论交流,自我解决。并阅读课本P33页。结论:参数取的不同,可以得到圆的不同形式的参数方程。4,反思归纳:求参数方程的方法步骤。(二)、应用举例例1、【课本P33页例3】已知两条曲线的参数方程(1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。学生练习,教师准对问题讲评。(二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合)例2、1、已知

3、点P(x,y)是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y的最值, (3)P到直线x+y- 1=0的距离d的最值。 解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为由于点P在圆上,所以可设P(3+cos,2+sin),(1) x2+y2 = (3+cos)2+(2+sin)2 =14+4 sin +6cos=14+2 sin( +). (其中tan =3/2) x2+y2 的最大值为14+2 ,最小值为14- 2 。(2) x+y= 3+cos+ 2+sin=5+ sin( + ) x+y的最大值为

4、5+ ,最小值为5 - 。(3)显然当sin( + )= 1时,d取最大值,最小值,分别为, . 2、 过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦:为最长的直线方程是_;为最短的直线方程是_;3、若实数x,y满足x2+y2-2x+4y=0,则x-2y的最大值为 。(三)、课堂练习:学生练习:1、2(四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。2、参数取的不同,可以得到圆的不同形式的参数方程。从中体会参数的意义。3、利用参数方程求最值。要求大家掌握方法和步骤。(五)、作业:课本P39页A组6、7、8 B组51、方程(t为参数)所表示的一族圆的圆心轨迹是(D)A一个定点 B一个椭圆 C一条抛物线 D一条直线2、已知,则的最大值是6。8曲线的一个参数方程为五、教学反思:

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服