1、2.1.1 指数与指数幂的运算(1)学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程 一、 课前准备(预习教材P48 P50,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的 ,记作 ; 如果一个数的立方等于a,那么这个数叫做a的 ,记作 . 二、新课导学 探索新知探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数函数概念提出的背景,体会引入指数函数的必要性.实例1. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长
2、50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3, 则x年后GDP为2000年的多少倍? 问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14关系为. 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: ,那么就叫4的 ;,那么3就叫27的 ;,那么就叫做的 .依此类推,若,,那么叫做的 .新知:一般地,若,那么叫做的次方根 ( t
3、h root ),其中,.简记:. 例如:,则.反思:当n为奇数时, n次方根情况如何?例如:,, 记:.当n为偶数时,正数的n次方根情况? 例如:的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是0,即.试试:,则的4次方根为 ; ,则的3次方根为 .新知:像的式子就叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).试试:计算、.反思:从特殊到一般,、的意义及结果? 结论:. 当是奇数时,;当是偶数时,. 典型例题例1求下类各式的值: (1) ; (2) ; (3); (4) ().变式:计算或化简下列各式.(1); (2).动手试试练1. =.练2. 化简.三、总结提升 学习小结:1. n次方根,根式的概念;2. 根式运算性质.学习评价 课堂检测(时量:5分钟 满分:10分):1. 的值是( ).A. 3 B. 3 C. 3 D. 812. 625的4次方根是( ). A. 5 B. 5 C. 5 D. 253. 化简是( ). A. B. C. D. 4. 化简= .5. 计算:= ; .课后作业1. 计算:(1);(2). (3) (4).2.课本59页习题2.1 A组第1题4