收藏 分销(赏)

Ⅰ型有机质生油增压数学模型建立与应用.pdf

上传人:自信****多点 文档编号:605584 上传时间:2024-01-12 格式:PDF 页数:6 大小:1.15MB
下载 相关 举报
Ⅰ型有机质生油增压数学模型建立与应用.pdf_第1页
第1页 / 共6页
Ⅰ型有机质生油增压数学模型建立与应用.pdf_第2页
第2页 / 共6页
Ⅰ型有机质生油增压数学模型建立与应用.pdf_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第30卷第5期油气地质与采收率Vol.30,No.52023年9月Petroleum Geology and Recovery EfficiencySep.2023引用格式:赵阳,徐小龙,阙仕煜,等.型有机质生油增压数学模型建立与应用J.油气地质与采收率,2023,30(5):57-62.ZHAO Yang,XU Xiaolong,QUE Shiyu,et al.Establishment and application of mathematical model of oil generated overpressureby type I organic matterJ.Petroleum

2、Geology and Recovery Efficiency,2023,30(5):57-62.型有机质生油增压数学模型建立与应用赵 阳1,徐小龙1,阙仕煜1,段 毅2(1.辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺113000;2.中国科学院 西北生态环境资源研究院,甘肃 兰州 730000)摘要:生油增压定量化研究是计算油气成藏动力并进一步确定油气分布的关键。目前已有的生油增压计算方法较复杂或计算精度不足,影响其在勘探中快速应用。基于型有机质生烃特征综合分析,建立了生油增压数学模型,并将该模型应用于鄂尔多斯盆地西峰油田长7段烃源岩生油增压的计算,同时分析了不同参数对生油增压的影响。

3、结果显示,西峰油田长7段烃源岩生油增压为4.614.8 MPa,地层压力与前人计算结果相近,说明模型具有较高的可靠性。参数敏感性分析表明,岩石压缩系数对生油增压影响程度最大,为99.056%;总有机碳含量影响程度为0.342%;生烃影响因子和干酪根生油转化效率对生油增压的影响程度分别为0.261%和0.250%;孔隙度和地层压力对生油增压的影响程度较小,分别为0.09%和0.001%。模型同时揭示,较高的地层压力不利于生油增压,地层压力越高,增压越小。关键词:烃源岩;型有机质;压缩性;生油增压;敏感性分析文章编号:1009-9603(2023)05-0057-06DOI:10.13673/j.

4、pgre.202211044中图分类号:TE341文献标识码:AEstablishment and application of mathematical model ofoil generated overpressure by type I organic matterZHAO Yang1,XU Xiaolong1,QUE Shiyu1,DUAN Yi2(1.College of Petroleum Engineering,Liaoning Petrochemical University,Fushun City,Liaoning Province,113000,China;2.North

5、west Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou City,Gansu Province,730000,China)Abstract:Quantitative study on oil generated overpressure is the key to calculating the dynamics of oil and gas reservoirs and determining the distribution of oil and gas.The existing

6、 calculation methods of oil generated overpressure are low in calculation accuracyand complex,which affect their rapid applications in exploration.In this study,according to the comprehensive analysis of hydrocarbon generation characteristics of type I organic matter,a new mathematical model of oil

7、generated overpressure was established.The model was used to calculate the oil generated overpressure of Chang7 source rock in Xifeng Oilfield of Ordos Basin and analyzethe influence of different parameters on the oil generated overpressure.The results show that the oil generated overpressure ofChan

8、g7 source rock in Xifeng Oilfield is 4.6-14.8 MPa,and the formation pressure is similar to the previous calculation results,which indicates that the model is highly reliable.The sensitivity analysis of rock parameters shows that the rock compressibility factor has the greatest influence on the oil g

9、enerated overpressure,with a value of 99.056%,followed by the total organic carbon content,with a value of 0.342%.The influence of hydrocarbon generation factor and kerogen oil-generating conversion efficiency onthe oil generated overpressure is 0.261%and 0.250%,respectively,and the porosity and for

10、mation pressure have a relatively smalleffect on the oil generated overpressure,which is 0.09%and 0.001%,respectively.The model also reveals that higher formationpressure is not conducive to oil generated overpressure,and higher formation pressure makes the oil generated overpressure smaller.Key wor

11、ds:source rock;type I organic matter;compressibility;oil generated overpressure;sensitivity analysis收稿日期:2022-11-20。作者简介:赵阳(1986),男,内蒙古赤峰人,讲师,博士,从事油气藏地质方面的研究工作。E-mail:。通信作者:段毅(1956),男,甘肃镇原人,研究员,博士。E-mail:。基金项目:国家自然科学基金项目“沉积单体芳烃生物标志化合物氢同位素的主控因素及其示踪研究”(41972110)。58 油气地质与采收率2023年9月含油气盆地的发育和形成与地层超压具有密切的

12、关系1。欠压实作用2-4、黏土矿物脱水5-6、有机质生烃作用7-10、流体热增压作用11-12、构造应力13等是超压形成的重要因素。有机质生烃作用不仅能增加地层压力,同时还控制油气排出过程14。因此,建立生油增压数学模型对分析油气运移及分布有重要意义。BREDEHOEFT等在考虑油气的生成和排出基础上,利用三维生油动力学模型验证了生烃作用对犹他盆地地层超压的影响15。徐思煌等在质量守恒、体积守恒和压力守恒3个原则约束情况下建立了生油增压的数学模型,模型显示干酪根生成气态烃时产生的增压更加显著16。对于封闭条件较好的烃源岩,生烃作用引起的超压达到岩石破裂压力时会导致烃源岩产生裂缝,发生幕式排烃1

13、7。BERG等在岩石渗透率极低、应力状态稳定、生烃速率不变和低温生油、高温生气的假设条件下建立了数学模型,进一步肯定了生烃作用对幕式排烃的意义18。郭小文等利用生油增压数学模型计算了生油增压,并通过实验验证了生油增压模型的计算结果19。已有研究成果从不同方面说明了生烃作用对超压及排烃的重要性,但是这些模型或者数据需求量高导致应用难度大,或者计算过于简化导致精度偏低。为此,通过分析I型干酪根的生烃特征,重新建立生油增压数学模型并获得解析解,同时分析控制生油增压的主控因素,以期为油气成藏动力20和烃源岩微裂缝研究提供参考21-23。1生油增压模型推导生油增压模型需遵循以下假设条件:烃源岩孔隙连通性

14、较好。型干酪根生成的气体全部溶解在原油中19。烃源岩受到的构造应力不变。生烃过程中地层温度和埋藏深度不变。生烃前后干酪根压缩系数不变。烃源岩生烃前,孔隙空间被地层水充满(图1a),则有:Vw1=(1)孔隙中液态烃的质量可以表示为19:Mo=AFMk1(2)干酪根生油后原油的密度可表示为:o2=o1+Co()p+p1(3)则干酪根生成的原油体积表达式为:Vo2=Mo/o2=AFMk1/o1+Co()p+p1(4)烃源岩中总有机碳含量(TOC)的表达式为24:TOC=Vkkb(5)因此,干酪根生油前单位体积烃源岩中的干酪根体积Vk1和质量Mk1分别为:Vk1=TOC bk(6)Mk1=TOC b(

15、7)将(7)式代入(4)式得:Vo2=AF TOC b/o1+Co()p+p1(8)系统温度不发生变化时,液体物态方程为25:V=Vo1-f(p-po)(9)则生油后孔隙中水的体积为:Vw2=Vw1(1-Cwp)(10)将(1)式代入(10)式得:Vw2=(1-Cwp)(11)干酪根一部分转化为原油,剩余的干酪根由于孔隙压力增大受到压缩(图1b),因此生油后干酪根的体积为:Vk2=(1-AF)(1-Cp)Vk1(12)将干酪根看作孔隙的一部分,则生油前后孔隙体积的关系为:Vk2+Vo2+Vw2=(1+Cpp)(Vw1+Vk1)(13)将(1),(6),(8),(11),(12)式代入(13)式

16、,整理得:p=-b+b2-4ac2a(14)其中:a=oCo()Cp+Cw+Vk1Cp+Vk1oCkCo()1-AF(15)b=()o+oCop1()Cp+Cw+Vk1Cp+oCoVk1-oVk1()1-AF()Co-Ck-CoCkp1(16)c=()o+oCop1Vk1-AFMk1-oVk1()1-AF()1+Cop1(17)图1型干酪根生油增压概念模型Fig.1Conceptual model of type I kerogen oilgenerated overpressure第30卷第5期赵 阳等.型有机质生油增压数学模型建立与应用 59 2应用实例鄂尔多斯盆地西峰油田长7段烃源岩发育

17、范围大,有机质含量高、类型好,是鄂尔多斯盆地中生界重要的油源岩26-27。西峰油田地处鄂尔多斯盆地西南部,区内长 7 段烃源岩厚度为 120160 m,TOC为 4%8%,镜质组反射率(Ro)为 0.7%0.95%28,具有较强的生烃能力。以西峰油田长7段烃源岩为例,计算其成藏期生油增压。此外,需重新厘定部分参数。2.1 孔隙度计算孔隙度倒数压实模型为29:11=10+KZ(18)MAGARA提出了孔隙度随埋深变化的指数模型30:1=0e-cz(19)研究认为,双元模型可以将孔隙度恢复至成藏期。基于文献31,利用双元模型恢复了西峰油田12口井长 7段烃源岩成藏期孔隙度。计算结果显示,西峰油田长

18、7段烃源岩成藏期孔隙度为22.48%29.13%,平均为26.19%(表1)。2.2 岩石压缩系数矿物分析显示,鄂尔多斯盆地南部长7段泥页岩矿物组成差异较小,黏土矿物含量为42.16%,石英含量为27.75%,斜长石含量为18.46%,菱铁矿和其他矿物含量为11.63%32。基于各类矿物含量及压缩系数可计算不同岩石的骨架压缩系数33。西峰油田长7段泥页岩黏土矿物、石英、斜长石和菱铁矿的Cs分别取9.0910-5 34,1.2010-5 33,3.0010-5和8.6010-5MPa-135。西峰油田长7段烃源岩成藏期的岩石压缩系数表达式为:Cp=1-i=1nxiCsi(20)利用(20)式计算

19、西峰油田长7段烃源岩成藏期的Cp为2.0310-5MPa-1。将生油增压参数(表2)代入(14)式,结果显示,西峰油田长7段烃源岩最大埋深期生油增压为4.614.8 MPa,地层压力为29.642.0 MPa,地层压力计算结果与前人研究结果(28.042.0 MPa)22有较好的吻合度,说明文中建立的模型具有较高的可靠性。2.3 参数敏感性为了分析生油增压模型参数的敏感性,以生油增压变化程度为指标研究参数的敏感性。其参数敏感性分析基准方案为:A 为 0.3,F 为 28%,TOC 为6%,为 26.2%,Cp为 2.0310-5MPa-1,p1为 25 MPa。将参数变化范围设定为10%60%

20、(表3),计算由此引起的生油增压。由于各参数量度不一致,引起的p差别较大,难以直接确定各参数的敏感性。因此,提出运用ki分析不同参数对p的影响,ki为p变化值与某参数变化值之比。计算结果显示:Cp,TOC,A,F,和p1的ki分 别 为 11 247,37.91,29.89,28.88,10.28 和0.09。将各敏感参数的ki代入(19)式即可得到每个参数的影响程度:=kii=16ki(21)计算结果显示,Cp对p的影响程度最大,为表1鄂尔多斯盆地西峰油田长7段烃源岩古孔隙度恢复结果Table1Paleoporosity restoration results of Chang7 sourc

21、e rock in Xifeng Oilfield of Ordos Basin井号白234固10葫90里69岭78木16宁10剖23西17镇12镇探1庄10HT=100/km362.7282.2322.4092.6662.4792.6192.3022.4932.5692.5092.4772.629HT=0/km362.2721.5631.2932.3311.8522.1891.6531.6432.1092.0892.0571.804T=0/%3622.3527.1325.0522.0523.1622.5426.8222.9826.6826.0227.3020.81T=100/%1.622.0

22、01.861.681.821.711.951.791.741.791.801.67T=100/%23.9729.1326.9123.7324.9824.2528.7724.7728.4227.8129.1022.48注:HT=100为长7段最大埋深期的深度;HT=0为长7段现今深度;T=0为长7段现今孔隙度;T=100为长7段最大埋深期至今孔隙度变化量;T=100为长7段最大埋深期孔隙度。60 油气地质与采收率2023年9月99.056%,远大于其他参数,进一步证明了本次研究考虑Cp的必要性。TOC的影响程度为0.342%,如果不考虑Cp,TOC对p具有最大的影响,A和F对p的影响程度接近,分

23、别为 0.261%和 0.250%,和p1对p的影响程度较小,分别为0.09%和0.001%。此外,p1越高,p越小,即较高的地层压力抑制生油增压。3结论在分析I型干酪根生烃特征基础上建立了生油增压数学模型,并且利用此模型计算了鄂尔多斯盆地西峰油田长7段烃源岩生油增压。结果表明,鄂尔多斯盆地西峰油田长7段烃源岩生油增压为4.614.8 MPa。地层压力计算结果与前人研究结果有较好的吻合度,表明文中建立的模型具有较高的可靠性。参数敏感性分析表明,Cp对p影响程度最大,TOC次之,A和F对p的影响程度较小,和p1对p的影响程度最低。生油增压模型揭示,较高的地层压力抑制生油增压。符号解释a,b,c一

24、元二次方程的3个系数;A生烃影响因子,mg/g;C沉积物压实常数;Ck干酪根压缩系数,MPa-1;Co原油的压缩系数,MPa-1;Cp岩石压缩系数,MPa-1;Cs岩石骨架压缩系数,MPa-1;Csi每种矿物的压缩系数,MPa-1;Cw地层水的压缩系数,MPa-1;F干酪根生油转化率,%;i矿物种类,i=1,2,n;K压缩因子,1/m;ki生油增压变化率;Mk1生油前干酪根的质量,g;Mo孔隙中液态烃的质量,g;p液体体积为V时对应的压力,MPa;po标准状况下的地层压力,MPa;p1生油前地层压力,MPa;p生油增压,MPa;TOC总有机碳含量,%;V液体体积,cm3;Vk单位体积烃源岩中的

25、干酪根体积,cm3;Vk1生油前单位体积烃源岩中的干酪根体积,cm3;Vk2生油后单位体积烃源岩中的干酪根体积,cm3;Vo标准状况下孔隙中的原油体积,cm3;Vo2干酪根生成后的原油体积,cm3;Vw1生油前孔隙中水的体积,cm3;Vw2生油后孔隙中水的体积,cm3;xi每种矿物的含量,%;Z地层埋深,m;参数影响程度,%;f液体密度,g/cm3;干酪根转化因子,一般取1.2;b标准状况下烃源岩密度,g/cm3;k干酪根密度,g/cm3;o标准状况下原油密度,g/cm3;o2生油后原油被压缩后密度,g/cm3;岩石孔隙度,%;0岩石初始孔隙度,%;1埋深为Z处的岩石孔隙度,%。表2鄂尔多斯盆

26、地西峰油田长7段烃源岩生油增压参数Table2Basic parameters of oil generated overpressure for Chang7 source rock in Xifeng Oilfield of Ordos BasinF/%28k/(gcm-3)1.2o/(gcm-3)0.9b/(gcm-3)2.451Cw/MPa-14.4010-4Ck/MPa-11.4010-3Cp/MPa-12.0310-5Co/MPa-12.2010-3表3生油增压数学模型参数敏感性分析Table3Sensitivity analysis table of mathematical m

27、odel of oil generated overpressure参数变化范围/%0102030405060A/(mgg-1)0.300.330.360.390.420.450.48F/%28.030.833.636.439.242.044.8TOC/%6.06.67.27.88.49.09.6/%26.228.831.434.036.739.341.9Cp/MPa-12.0310-52.2310-52.4410-52.6410-52.8410-53.0510-53.2510-5p1/MPa25.027.530.032.535.037.540.0第30卷第5期赵 阳等.型有机质生油增压数学模

28、型建立与应用 61 参考文献 1 杜栩,郑洪印,焦秀琼.异常压力与油气分布J.地学前缘,1995,2(3/4):137-148.DU Xu,ZHENG Hongyin,JIAO Xiuqiong.Abnormal pressuredand hydrocarbon accumulationJ.Earth Science Frontiers,1995,2(3/4):137-148.2 CHAPMAN R E.Clays with abnormal interstitial fluid pressuresJ.American Association of Petroleum Geologists B

29、ulletin,1972,56(4):790-795.3 刘成林,平英奇,郭泽清,等.柴达木盆地西北古近系新近系异常高压形成机制分析J.地学前缘,2019,26(3):211-219.LIU Chenglin,PING Yingqi,GUO Zeqing,et al.Genetic mechanism of overpressure in the Paleogene and Neogene in the northwestern Qaidam BasinJ.Earth Science Frontiers,2019,26(3):211-219.4 孙龙飞,李慧勇,许鹏,等.渤海海域渤中19-6构

30、造古近系泥岩段速度异常分析及定量预测J.海洋地质前沿,2020,36(11):11-17.SUN Longfei,LI Huiyong,XU Peng,et al.Analysis and prediction of abnormal velocity in Paleogene mudstone of structureBZ19-6 in offshore Bohai Bay BasinJ.Marine Geology Frontiers,2020,36(11):11-17.5 BURST J F.Diagenesis of gulf coast clayed sediments and it

31、s possible relation to petroleum migrationJ.American Association ofPetroleum Geologists Bulletin,1969,53(1):73-93.6 余琪祥,余风华,史政.塔里木盆地巴什托构造异常高压特征及成因J.天然气地球科学,2017,28(7):1 000-1 007.YU Qixiang,YU Fenghua,SHI Zheng.Genesis analysis of abnormal overpressure in Bashituo structure,Tarim BasinJ.NaturalGas G

32、eoscience,2017,28(7):1 000-1 007.7 吴娟,叶加仁,施和生,等.恩平凹陷中央断裂构造带超压发育及成藏意义J.中南大学学报:自然科学版,2013,44(7):2 801-2 811.WU Juan,YE Jiaren,SHI Hesheng,et al.Overpressure formingand its effect on petroleum accumulation in central faulted structural belt of Enping Depression,ChinaJ.Journal of CentralSouth University

33、:Science and Technology,2013,44(7):2 801-2 811.8 刘华,袁飞飞,蒋有录,等.沾化凹陷古近系超压特征及其成因机制J.中国石油大学学报:自然科学版,2021,45(3):23-32.LIU Hua,YUAN Feifei,JIANG Youlu,et al.Genesis and characteristics of Paleogene overpressure in Zhanhua Depression,Jiyang Sub-basinJ.Journal of China University of Petroleum:Edition of Nat

34、ural Science,2021,45(3):23-32.9 李婷,邓海,邹伟奇.复杂断陷盆地低渗透油藏形成条件及油气富集规律以海拉尔盆地贝尔凹陷贝中次凹南二段为例J.大庆石油地质与开发,2021,40(4):32-37.LI Ting,DENG Hai,ZOU Weiqi.Accumalation conditions andhydrocarbon enrichment laws of low-permeability oil reservoirsin complex rift basins:a case study from the second member ofNantun Form

35、ation of Beizhong sub-sag in Beier Sag of HailarBasinJ.Petroleum Geology&Oilfield Development in Daqing,2021,40(4):32-37.10郝牧歌,张金功,马士磊.从常规与非常规油气成藏的正相关性角度预测有利区以孤岛1号凹隆域低部位为例J.油气地质与采收率,2022,29(4):46-56.HAO Muge,ZHANG Jingong,MA Shilei.Favorable area prediction from perspective of positive accumulation

36、correlation between conventional and unconventional oil and gas reservoirs:acase of low part in Gudao No.1 sag-uplift bandJ.Petroleum Geology and Recovery Efficiency,2022,29(4):46-56.11BARKER C.Quathermal pressuring-role of temperature in development of abnormal-pressure zones:geological notesJ.Amer

37、ican Association of Petroleum Geologists Bulletin,1972,56(10):2 068-2 071.12赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展J.石油学报,2017,38(9):973-998.ZHAO Jingzhou,LI Jun,XU Zeyang.Advances in the origin ofoverpressures in sedimentary basinsJ.Acta Petrolei Sinica,2017,38(9):973-998.13王雅星,柳广弟.库车坳陷异常高压成因分析J.新疆石油地质,2004,25(4):

38、362-364.WANG Yaxing,LIU Guangdi.Origin of adnormal high pressurein Kuqa DepressionJ.Xinjiang Petroleum Geology,2004,25(4):362-364.14谷玉田.临南洼陷压力场特征及其与油气分布的关系J.油气地质与采收率,2021,28(2):49-59.GU Yutian.Pressure field and its relationship with hydrocarbondistribution in Linnan SubsagJ.Petroleum Geology and Re

39、covery Efficiency,2021,28(2):49-59.15BREDEHOEFT J D,WESLEY J B,FOUCH T D.Simulations ofthe origin of fluid-pressure,fracture generation,and the movement of fluids in the Uinta Basin,UtahJ.American Associationof Petroleum Geologists Bulletin,1994,78(11):1 729-1 747.16徐思煌,梅廉夫,袁彩萍.成烃增压数值模拟J.石油实验地质,1998

40、,20(3):85-89.XU Sihuang,MEI Lianfu,YUAN Caiping.Numerical modelingon pressurizing caused by hydrocarbon generationJ.Experimental Petroleum Geology,1998,20(3):85-89.17HUNT J M.Generation and migration of petroleum from abnormally pressured fluid compartmentsJ.American Association ofPetroleum Geologis

41、ts Bulletin,1990,74(1):1-12.18BERG R R,GANGI A F.Primary migration by oil-generation microfracturing in low-permeability source rocks:application tothe Austin Chalk,TexasJ.American Association of PetroleumGeologists Bulletin,1999,83(5):727-756.19郭小文,何生,郑伦举,等.生油增压定量模型及影响因素J.石油学报,2011,32(4):637-644.GU

42、O Xiaowen,HE Sheng,ZHENG Lunju,et al.A quantitativemodel for the overpressure caused by oil generation and its influential factorsJ.Acta Petrolei Sinica,2011,32(4):637-644.20石正勇,金芸芸,罗家群.泌阳凹陷核桃园组优质烃源岩发育古环境特征及地质意义J.特种油气藏,2021,28(1):51-58.SHI Zhengyong,JIN Yunyun,LUO Jiaqun.Paleo-environmentalcharacter

43、istics of the development of high-quality hydrocarbon 62 油气地质与采收率2023年9月source rocks in Hetaoyuan Formation of Biyang Sag and geological significanceJ.Special Oil&Gas Reservoirs,2021,28(1):51-58.21聂舟,马诗杰,伍秋姿,等.长宁地区海相页岩天然裂缝发育特征及其对含气性的影响J.断块油气田,2022,29(5):591-597.NIE Zhou,MA Shijie,WU Qiuzi,et al.Deve

44、lopment characteristics of natural fractures in marine shale in Changning area andtheir influence on gas-bearing propertiesJ.Fault-Block Oil andGas Field,2022,29(5):591-597.22昝灵,骆卫峰,印燕铃,等.苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价J.石油实验地质,2021,43(2):233-241.ZAN Ling,LUO Weifeng,YIN Yanling,et al.Formation condit

45、ions of shale oil and favorable targets in the second member ofPaleogene Funing Formation in Qintong Sag,Subei BasinJ.Petroleum Geology&Experiment,2021,43(2):233-241.23孔祥文,汪萍,夏朝辉,等.西加拿大沉积盆地 Simonette 区块上泥盆统 Duvernay 页岩地质特征与流体分布规律 J.中国石油勘探,2022,27(2):93-107.KONG Xiangwen,WANG Ping,XIA Zhaohui,et al.G

46、eologicalcharacteristics and fluid distribution of the Upper Devonian Duvernay shale in Simonette block in the Western Canada Sedimentary BasinJ.China Petroleum Exploration,2022,27(2):93-107.24LEWIS R,INGRAHAM D,SAWYER W,et al.New evaluationtechniques for gas shale reservoirsR.Reservoir Symposium Sc

47、hlumberger,2004:1-11.25汪志诚.热力学与统计物理M.3版.北京:高等教育出版社,2003:1-227.WANG Zhicheng.Thermodynamics and statistical physicsM.3rd ed.Beijing:Higher Education Press,2003:1-227.26梁正中,许红涛,李昌.鄂尔多斯盆地西南边缘地区长8段充注成藏模式南北对比J.油气藏评价与开发,2022,12(6):918-926.LIANG Zhengzhong,XU Hongtao,LI Chang.Comparison of accumulation mod

48、el of Chang-8 reservoirs between Huanxi-Pengyang area in southwestern Ordos BasinJ.Reservoir Evaluationand Development,2022,12(6):918-926.27杜贵超,杨兆林,尹洪荣,等.鄂尔多斯盆地东南部长73段泥页岩储层有机质发育特征及富集模式J.油气地质与采收率,2022,29(6):1-11.DU Guichao,YANG Zhaolin,YIN Hongrong,et al.Developmental characteristics of organic matte

49、r and its enrichment model inshale reservoirs of Chang 73Member in Yanchang Formation ofsoutheast Ordos BasinJ.Petroleum Geology and Recovery Efficiency,2022,29(6):1-11.28付金华,罗安湘,喻建,等.西峰油田成藏地质特征及勘探方向J.石油学报,2004,25(2):25-29.FU Jinhua,LUO Anxiang,YU Jian,et al.Geological features ofreservoir formation

50、 and exploration strategy of Xifeng OilfieldJ.Acta Petrolei Sinica,2004,25(2):25-29.29FALVEY D A,MIDDLETON M F.Passive continental margins:evidence for a prebreakup deep crustal metamorphic subsidencemechanismC.Paris:26th International Geological Congress,Geology of Continental Margins Symposium,198

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服