资源描述
第一单元 分数乘法
分数乘整数
教学内容:教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:理解分数乘整数的计算方法。
教学过程
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算: ++= ++=
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数
1.教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
(1)、分析演示:
l 题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃个”意思什么?(每人吃了整个蛋糕的)
l 确定标准量(单位“1”)和比较量。每人吃了整个蛋糕的,是把整个蛋糕看作标准量(单位“1”);把每人吃的份数看作比较量。
l 借助示意图理解题意
根据题意列出加法算式 ++
(2)、观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
(3)比较和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点:是分数乘整数,12×5是整数乘整数。
(4)概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问:表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,教师板书:。提示:分子中3个2连加简便写法怎么写?学生答后板书:(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察:的分子部分、分母与算式两个数有什么关系?(互相讨论)
观察结果:的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出是用分数的分子2与整数3下乘的积作分子,分母不变。
根据的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
一个数乘分数的意义
教学内容:教材第3页例2,做一做。
教学目标:
1、通过直观操作理解一个数乘分数的意义
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义。
教学难点:理解一个数乘分数的意义。
教学过程:
一、复习导入
1、计算:×42 32× ×9×7
2、一个正方形的边长是m,它的周长是多少米?
二、创设情境,探究整数乘分数
1、借助情境理解整数乘分数的意义。
1桶水有12L。3桶共多少L?桶是多少L?桶是多少L?
(1)理解题意,明确题中的数量关系:单位量×数量=总量
(2)根据题意列出算式: 3桶水共多少L?12×3
桶是多少L?12× 桶是多少L?12×
(3)探究每道算式的意义
12×3表示求3个12L,也就是求12L的3倍是多少。
是一半,12×表示12L的一半,也就是求12L的是多少。
12×表示求12L的是多少。
发现:一个数乘分数表示的是求这个数的几分之几是多少。
(4)解决问题。12×3=36(L)
6
12×==6(L)
1
3
12×==3(L) 答:3桶共36L。桶是6L。桶是3L。
1
2、完成做一做
一袋面粉重3㎏.已经吃了它的,吃了多少千克?
学生独立解答后汇报。
3、在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的。一班男生做了多少件?(分析:男生做了总数的,是把“一班共制作泥塑作品15件”看作单位“1”,把总数15件平均分成5份。男生做的占其中的3份。)
4、归纳总结:
求一个数的几分之几是多少,用乘法计算。
5、练习:×6= 12×= ×4=
观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。
6、说一说下题错误的原因是( )
×3 A、整数与分子约分了
5 1 B、整数与分子相乘了
=×3 C、整数与分母相乘了
=
四、巩固练习,反馈提高
练习一第2、3题。
五、全课小结
分数乘分数(一)
教学内容:教材第3~4页例3,做一做1~3,练习一4~7。
教学目标:
1、理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握其计算法则。
教学难点:理解一个数乘分数的意义。
教学过程:
一、复习导入
(1)先说说下面算式的意义,再计算
×5= ×5= 2×= 25×=
(2)同学们每小时清理草坪20平方米,照这样计算,小时清理草坪多少平方米?
二、引入新课。
1、创设情境:李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。根据题目所给信息,你能提出什么问题?
预设:种土豆的面积是多少公顷? 种玉米的面积是多少公顷?
(1)理解题意:这块地共有公顷,种土豆的面积占这块地的,应把这块地的面积看作单位“1”。求种土豆的面积就是求公顷的是多少?乘法计算,列式×
2、揭示课题:请你观察×这个算式,它有什么特点?
板书课题:分数乘分数
三、操作探究算理。
1、提问:×究竟等于多少呢?
2、提出操作要求:这张纸代表面积是1公顷菜地。请你们小组合作用量一量、分一分、涂一涂的方法,说明×=。
3、学生动手操作,教师巡视。
4、小组汇报研究成果。
先把整张纸对折,纸就被平均分成两份,每一份是这张纸的,再把这部分平均分成5份,涂出其中的1份,这1份就占整张纸的。说明×=。
5、演示进行归纳。
演示涂色过程:我们先把这张纸平均分成2份,1份是这张纸的,又把这平均分成5份,也就是把这张纸平均分成了2×5=10份,1份是这张纸的。由此可以得到:
×==(板书算式)
四、迁移延伸,归纳法则。
1、理解题意:与解决问题(1)的方法相同,种玉米的面积占这块地(公顷)的,也是把这块地的面积看作单位“1”。求种玉米的面积就是求公顷的是多少,用乘法计算,列式为
×。
2、小组讨论并操作:怎样列式?涂色表示的。怎样计算?
3、交流计算方法和思路。
预设:与刚才一样,也是把这张纸分成2×5=10份,不同的是取其中的3份,可以得到:
(板书算式)
4、提问:观察黑板上的这两个算式,你能说一说分数乘分数的计算方法吗?
5、通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。
四、练习。
教材第4页“做一做”的第1、2题。
五、布置作业:练习一4~8
分数乘分数(二)
教学内容:教材第5页例4,做一做1~3,练习一8~13。
教学目标:
1、掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法计算,提高学生计算的能力。
2、能解答生活中简单的分数乘法问题,了解分数乘法在现实生活中的作用。
3、经历分数乘分数计算过程中的约分方法,感受成功的喜悦。
教学重点:掌握分数乘法计算过程中的约分方法。
教学难点:熟练掌握约分方法,提高计算的能力。
教学过程:
一、复习导入
1、算一算
×30= 12×= = =
交流时让学生说一说:(1)分数乘整数的约分方法。(2)分数乘分数的计算方法。
二、探索新知
1、例题4:无脊椎动物中游泳最快的是乌贼,它的速度是千米/分。
2、解决问题一:李叔叔的游泳速度是乌贼的。李叔叔每分钟游多少千米?
(1)阅读理解。学生阅读题目,理解题意。组织交流对题意的理解,得出:
①乌贼的速度是千米/分。
②李叔叔的游泳速度是千米/分的。
(2)列式解答。 让学生根据已掌握的计算方法独立解答,交流解答过程。师根据学生回答板书:
(㎞)
(3)启发思考。
在分数乘整数时,我们在计算过程中先约分,可以使计算简便。在这里,我们是否也可以进行先约分呢?该怎样进行约分呢?
学生独立思考,尝试计算。
(4)交流讨论。
组织全班交流,通过交流得出:分数乘分数,为了计算简便,可以先约分再乘。约分时,分子的两个因数和分母的两个因数进行约分,即:
(㎞)
3、解决问题二:乌贼30分钟可以游多少千米?
l 理解题意:a、提取题中已知条件和所求问题
已知条件 速度:乌贼的速度是千米/分
时间:30分钟
所求问题:乌贼30分钟可以游多少千米?
l 已知速度和时间,求路程,用乘法计算,列式为×30
(1)学生独立解答,约分:(㎞)
(2)教师指导:分数乘法也可以这样直接约分。板书:(㎞)
强调:分数和整数相乘,整数可以和分数的分母进行约分。
4、试一试。
还可以怎样进行约分呢?(强调:分数和分数相乘,可以采用分子和分母交约分。)
5、小结。在分数乘法计算过程中,能约分的,先约分再乘,这样可以使计算简便。
三、巩固练习
1、教材第5页“做一做”第1题。
这道题是分数乘法计算的练习,三个小题可以在计算过程中进行约分的。先让学生独立练习,再组织学生交流汇报,汇报时重点交流约分的方法。
2、教材第5页“做一做”第2题。
问题1:先让学生阅读题目,理解题意,根据“速度×时间=路程”的数量关系列出算式,再让学生独立计算,最后组织交流。强调能约分的要先约分再乘。
3、教材第5页“做一做”第3题。
四、课堂小结。
五、布置作业:练习一9~13
小数乘分数
教学内容:教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:掌握小数乘分数的计算方法。
教学难点:灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算下面各题。
= = =
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2 0.4 3.5 1.25
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)、提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
(2)、确定单位“1”,根据“松鼠的尾巴长度约占身体长度的”可知,应把“松鼠欢欢的身体长”看作单位“1”,单位“1”已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的是多少,用乘法计算,列式为2.1×
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数:==(分米)
分数化成小数:=2.1×0.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?
当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书:
小数和分母约分:(分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页“练习二”第2题。
3、教材第10页“练习二”第3题。
分数混合运算和简便计算
教学内容:教材第8页例6、例7,做一做1~2,练习一5~11。
教学目标:
1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
教学重点:会计算分数混合运算,能利用乘法的运算定律进行简便运算。
教学难点: 根据题目特点,灵活地运用定律进行简便计算。
教学过程
一、复习导入。
1、提问:整数混全运算顺序是怎么样的?
预设:先算乘、除法,再算加、减法。
2、追问:遇到有括号的题该怎么来计算?
预设:有括号的要先算小括号里面的,再算中括号里面的。
3、计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。
21×3+25 6×8-5×4 21×(36-14)
二、探索新知
1、向学生说明:分数混合运算的运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
×+1 1-× 学生独立完成,小组内订正。
2、分数混合运算
出示例题6:一个画框,长米,宽米,做这个画框要多长的木条?
3、学生读题,理解题意。已知长方形画框的长是m,宽是m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。
4、学生独立列式。
或
启发自学,交流收获。
教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?
(1)请学生自学教材第9页的内容。
(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。
5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?
(在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。在一个有括号的算式里,要先算括号里的运算,再算括号外的运算。)
6、分数乘法的简便计算。
(1)算式。
○ ○ ○
学生计算后,会发现每一行的两道算式结果相等,这时教师在每行的左右算式中间填上等号,并启发学生思考:每行两个算式的结果相等,这是数字的巧合呢?还是有一定的运算规律?
(2)指导观察,发现规律。
观察上面每组的两个算式,它们有什么关系?
引导学生通过观察比较,发现:第一组是两个因数交换了位置,运用了乘法交换律;第二组是三个数相乘,左边是先算前两个,右边是先算后两个,运用了乘法结合律;第三组算式符合乘法分配律,左边是两个数的和与一个数相乘,右边是这两个数分别与这个数相乘,然后再相加。
(3)总结规律。
在学生回答的基础上,引导学生得出结论:在分数乘法中,也能使用乘法交换律、结合律、分配律。整数乘法中的运算定律在分数乘法中同样适用。
7、应用规律进行简便计算。
(1)出示例题7.
(2)让学生思考怎样计算比较简便,然后独立完成,如果遇到困难可以在小组里讨论交流。
交流时,让学生汇报自己的想法,分别说一说运用了哪种运算定律使计算简便。
三、巩固练习
1、教材第9页“做一做”第1题。让学生先观察算式分别有什么特点,思考应该如何计算才会比较简便。学生独立计算,并请个别学生上台板演,完成后集体讲评。
2、教材第9页“做一做”第2题。
四、课堂总结:
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
解决问题(一)
教学内容:教材第13页例8,做一做。
教学目标:
1、理解并掌握分数连乘问题的解题思路与方法。
2、经历解决问题的全过程,掌握解决问题的各个步骤,提高分析问题和解决问题的能力。
3、感受数学与生活的联系,体会解题策略的多样性。
教学重点:理解并掌握分数连乘问题的解题思路与方法。
教学难点:理解并掌握各种不同的解题策略,灵活运用知识解决分数连乘问题。
教学过程:
一、创设情境,探索新知。
1、揭示课题:我们已经学过了分数乘法的知识,今天我们就利用这些知识来解决一些实际问题(板书:解决问题)(出示例8情境图,但不出示问题)
这个大棚共480㎡,其中一半种各种萝卜。红萝卜的面积占整块萝卜地的
2、提取信息:从这幅图中你得到了哪些信息?
根据题意,完成以下填空。
整个大棚的面积是 。
萝卜地的面积占整个大棚面积的 。
红萝卜地的面积占萝卜地面积的 。要求的是 的面积。
3、分析与解答
(1)用长方形纸表示大棚的面积,折出萝卜地的面积。
①认识一半用分数表示就是 ②学生折一折。
让学生取了一张长方形纸,代表大棚的面积,然后折出各种萝卜地的面积。
③计算出萝卜地的面积:480×=240(㎡)
(2)折出红萝卜地的面积。
①交流:怎样折出红萝卜地的面积?
(红萝卜地占萝卜地的,也就是占大棚一半的,先折出整张纸的一半,再折出一半的。)
②学生动手折一折。
③计算出红萝卜地的面积:240×=60(㎡)
(3)列综合算式解答。 480××=60(㎡)
(4)探讨不同的解题方法。
①教师让学生将整张纸展开,观察并说说:从这张纸上,你能看出红萝卜地的面积占大棚面积的几分之几吗?
②小组交流。
提问:你还有其他方法来计算红萝卜地的面积吗?
学生独立思考后进行小组交流。
③组织汇报。先求红萝卜地的面积占大棚面积的几分之几:
再求出红萝卜地的面积:480×=60(㎡)综合算式:480×(×)=60(㎡)
4、回顾与反思
(1)教师启发:刚才我们用两种不同的解题方法求出了红萝卜地的面积是60㎡,现在我们能写答句了吗?对,不能,因为我们还没有对这个答案进行检验。大家能用自己喜欢的方法来检验一下这个答案的合理性吗?
(2)学生尝试检验。教师巡视,辅导有困难的学生。
(3)组织全班交流。
二、巩固练习:教材第14页“做一做”。指名学生按照阅读与理解、分析与解答、回顾与反思三个环节展开交流。
三、课堂小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?
(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
解决问题(二)
教学内容:教材第14、15页例9,做一做。
教学目标:
1、理解并掌握“求一个数比另一个数多(少)几分之几”的问题的解题思路和解题方法。
2、经历解题过程,掌握解题步骤,学会用线段图分析问题。
3、提高学生分析问题和解决问题的能力。
教学重点:理解并掌握“求一个数比另一个数多(少)几分之几”的问题的解题思路和解题方法。
教学难点:灵活运用分数乘法的知识解决日常生活中的相关问题。
教学过程:
一、复习导入。
1、读题并说出单位“1”。
(1)黑兔只数是白兔的。 (2)黑兔只数的等于白兔只数。
(3)苹果的数量相当于梨的. (4)苹果树占果园面积的。
(5)钢笔的价钱比圆珠比贵
2、口头列式
(1)小红有120元压岁钱,买文具用了,买文具用了多少钱?
(2)汽车每小时可行80千米,火车每小时比汽车快,火车每小时比汽车多行多少千米?
二、探索新知
1、出示例题9。人心脏跳动的次数随年龄而变化。青少年心跳每分钟约75分,婴儿每分钟心跳的次数比青少年多。婴儿每分钟心跳多少次?
(1)学生独立读题后,交流从题目中获得的信息。
完成教材例题9中“阅读与理解”的填空。
(2)分析与解答。
①找单位“1”。提问:题目中的是把谁看作单位“1”?
(青少年每分钟心跳的次数)
②画线段图进行分析。
交流画线段图的方法:题目中有“青少年”和“婴儿”两种量,一般要用两条线段来表示;画线段图时,把单位“1”的量画在上面,比较量画在下面;把单位“1”的量平均分成5份,婴儿心跳次数比青少年多的部分相当于5份中的4份。
教师结合学生的交流情况板书线段图:
“1”
青少年:
75次 比青少年多
婴儿:
?次
③交流解题思路。
学生结合线段图,在小组内交流解题思路。
④独立解答。教师巡视,辅导有困难的学生。
⑤全班交流。
组织交流汇报,汇报时让学生说说是根据哪种解题思路进行解答的。
解法一:75+75× 解法二:75×(1+)
=75+60 =75×
=135(次) =135(次)
(3)回顾与反思。
①回顾分析题意时采用的方法以及采用这种方法的好处。
②检验计算结果的合理性。
2、教材第15页“做一做”
(1)学生读题,理解题意。
(2)介绍有关“噪音危害”的知识。
(3)学生尝试画线段图进行分析与解答。
(4)组织全班交流。
3、小结。“求一个数比另一个数多(少)几分之几” 的问题,解决这类问题时,我们可以先从关键句中找出单位“1”,然后画出线段图来弄清解题思路,再解答。
三、全课小结:这节课你有什么收获?
|第二单元位置与方向
位置与方向㈠
教学内容: 教材第19、20页相关内容及练习题
教学目标:
知识与技能:
1、通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。
2、学会通过测量描述物体在平面图上的具体位置,并会根据描述在平面图上画出物体的具体位置。
过程与方法:通过小组合作交流探讨,掌握画图的方法。 情感态度价值观:
1、体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2、培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重难点:能根据任意方向和距离确定物体的位置;根据描述标出物体在平面图上的具体位置。
教、学具准备: 直尺、量角器等。
教学过程:
一、情景导入
1、交流例题1中有关台风的消息。
(1)、同学们听说过台风吗?你对台风有什么印象?
(2)、播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2、导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。
板书课题:位置与方向(一)
通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。
二、探究新知
(一)、教学题例1
1、出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)
2、交流确定台风中心具体位置的方法。
(1)让学生尝试说说台风中心的具体位置。
(2)教师结合学生的汇报情况进行引导。 提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
(3)小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具体位置吗?
引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。
3、组织计算。
师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市呢? 学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1、出示例题2。
提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。
2、尝试画图。
(1)学生独立思考怎样标出B市、C市的具体位置。
(2)小组交流作图的方法。
(3)尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3、组织全班交流。展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm 表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4、算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5、总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定? 总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。
三、巩固练习
1、教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。
(1)让学生独立进行测量、计算、填空。
(2)组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2、教材第21页“做一做”。
(1)学生独立进行画图。
(2)展示,组织评议。
(3)交流画图的方法。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。
板书设计;
位置与方向(一) 确定观测点
确定物体在观测点的什么位置 确定物体距离观测点的距离
位置与方向㈡
教学内容: 教材第22页相关内容及练习题
教学目标:
1、体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2、培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重难点:
1、能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
2、能根据观测点的变化灵活描述路线。
教、学具准备: 量角器、三角尺等。
教学过程:
一、复习导入
1复习。
同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件? 分别让学生说一说。 (确定物体相对于观测点的方向;确定物体相对于观测点的距离。)
2、导入。 今天这节课我们继续学习位置与方向的相关知识。
板书课题:位置与方向(二)
简单的知识回顾,帮助学生回忆学习过的有关知识,为学习新课做准备,让学生能快速地进入学习状态。
二、探过新知
(一)教学例题3。
1、出示台风的大致路径图。
(1)让学生在路径图上分别找一找:台风生成地、A市、B市、路径图上的方向标。
(2)指名汇报。
2、提出问题。
你能用自己的语言说说台风的移动路线吗?
如果学生有困难,可以进行如下适当启发:
台风生成以后,先是沿正西方向移动 km,然后改变方向,向西偏北 方向移动了 km,到达A市。接着,台风又改变了方向,向 偏 30度方向移动了 km,到达B市。
3、组织交流。
指名汇报,其他学生进行补充。
通过交流活动让学生明白台风到达一个新的位置后,要以新的位置作为观测点来判断台风运行的方向。
4、小结描述路线的方法。
描述路线时要讲清楚“从哪里出发”“沿什么方向”“移动多少距离”“到达哪里”。
(二)出示教材第22页“做一做”。
1、提出要求。
根据下面的描述画出路线示意图。
2、小组讨论画图方法。
⑴学生小组讨论怎么样画图。教师巡视,参与个别小组讨论。
⑵组织交流汇报。 通过交流,让学生明白画图的步骤:
①定下出发时的位置。
②标出示意图的方向标。
③用量角器量出方向。
④确定比例尺,计算出图上距离,量出图上距离。
3、学生独立画路径图。
教师巡视,辅导有困难的学生。
4、展示汇报,交流评议。
交流时分别让学生说一说自己是如何画的。 教师要适时指导学生,特别是如何确定比例尺,也就是图上每一格代表实际的距离是多少。
教学过程中让学生通过观察分析、独立思考、合作交流等方式,亲历问题分析、解决过程,更好地理解物体之间的相对位置关系。
三、巩固练习
1、教材第23页“练习五”第3题。
这道题主要是通过动手操作测量,体会观测点的不同,引起方向的不同,从而懂得物体位置的方向是相对的。
教学时可以通过以下步骤进行:
(1)在中国地图上找出北京和哈尔滨的位置;
(2)分别以北京和哈尔滨为观测点,画出“十”字方向标;
(3)连一连,量一量;
(4)说一说北京在哈尔滨的什么方向上,哈尔滨在北京的什么方向上;
(5)你发现了什么?(物体位置方向是相对的)
2、教材第26页“练习五”第9题。
(1)先根据描述,把公共汽车行驶的路线图画完整。通过这个小题,让学生巩固画路线图的方法。
(2)再根据路线图,说一说公共汽车沿原路返回时行驶的方向和路。通过这个小题,感受物体位置方向的相对性。 四、课堂小结
师生通过交流总结:知道了如何描述路线图,并根据路线图画出示意图,知道了物体的位置方向是相对的。 板书设计;
位置与方向㈡
描述路线:从哪里出发→沿什么方向→移动多少距离→到达哪里
定下出发的位置。标出示意图的方向标。画路线图的方法:用量角器量出方向。确定比例尺,计算出图上距离,量出图上距离。体的位置方向是相对的。 板书设计;
位置与方向㈡
描述路线:从哪里出发→沿什么方向→移动多少距离→到达哪里
位置与方向(三)
教学内容: 练习课
教材第23-25页相关内容及练习题
教学目标:
1、通过练习,进一步巩固确定物体位置的方法,掌握描述路线的方法和画路线图的步骤。
2、在练习过程中,积极参与交流讨论,培养学生的合作意识。
3、通过练习,感受数学知识与日常生活的密切联系,感受数学知识的价值。
教学重难点:
重点:灵活运用位置与方向的相关知识来确定物体的位置。
难点:根据描述的路线绘制路线示意图。 教学方法:
教学过程:
一、复习引入 1.复习
(1)在图上确定物体的具体位置需要具备哪些条件?
(2)怎样描述物体的移动路线?
(3)根据描述画路线示意图时要注意什么? 2.导入
今天这节课,我们就来做一些有关位置和方向的练习。
(板书课题:练习五) 二、探索新知
二、教材第23页“练习五”第1题。
这道题是让学生通过测量教材上的方伴图,确定物体所在的方向。练习时先让学生将观测点的“十”字坐标图放大,再进行测量。
三、教材第23页“练习五”第2题。
这道题是以填空的形式让学生用方向和距离两个条件来确定各建筑物所在的位置。
四、教材第24贾“练习五”第4题。
提问:要知道小刚家在学校的什么位置上,你有什么好办法?
学生操作测量后,继续提问:那学校又在小刚家的什么位置上呢?
小组活动:在小组内分别说一说其他几位同学家在学校的什么位置上,再说一说学校在这几位同学家的什么位置上。
把你的发现和全班同学一起交流。
五、教材第24-25页“练习五”第5、7题。
这道题是根据描述在平面图上标出物体所在的位置。练习时,先让学生独立完成,再组织交流,交流时让学生说说在平面图上标物体所在的位置时要注意什么。
六、教材第25页“练习五”第6题。
这道题是将数对的知识和确定位置的知识相结合,促进知识间的联系。 6.教材第26页“练习五”第8题。 出示题目后,引导学生看图。
提问:从图上你了解到哪些信息? 学生观察并交流获得的信息。
根据路线图,让学生说一说小玲从家去书店和回来时所走的方向和路程。 教师组织学生动手量一量,在小组中交流,再填表格,最后汇报展示。 组织学生在小组中完成第(2)小题,然后交流汇报。 7.教材第27页“练习五”第10题。
七、同学之间互相说一说上学和放学的大致路线。 8.教材第27页“练习五”第
展开阅读全文