1、6.3实数(第2课时)一、学习目标 1、知道实数范围内,相反数、倒数、绝对值的意义。 2、会按要求用近似有限小数代替无理数,再进行计算。二、重点与难点 重点:在实数内会求一个数的相反数、倒数、绝对值。 难点:简单的无理数计算。三、合作探究 学前准备1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律2、用字母表示有理数的加法交换律和结合律3、有理数的混合运算顺序自主探索 独立阅读,自习教材总结 当数从有理数扩充到实数以后,1、数a的相反数是 ;2、一个正实数的绝对值是它 ;一个负实数的绝对值是它的 ;0的绝对值是 。3、实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数
2、及0可以进行开方运算,任意一个实数可以进行开立方运算。在进行实数的运算时,有理数的运算法则及运算性质等同样适用。讨论 下列各式错在哪里?1、 2、3、 4、当时,四、精讲精练例1、计算下列各式的值:解: 总结 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的练习 (精确到0.01) (结果保留3个有效数字)总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算计算 23 +2 应用迁移,巩固提高例2求5的算术平方根于的平方根之和(保留3位有效数字)(精确到0.01)O例3 已知实数在数轴上的位置如下,化简五、课堂小结 1、实数的运算法则及运算律。 2、实数的相反数和绝对值的意义 六、作业1、的相反数是 , 的相反数是2、当时, , 3、已知、在数轴上如图,化简 O 6、在两个连续整数和之间,即,那么、的值是 7、计算下列各题 仔细观察上面几道题及其计算结果,你能发现什么规律吗?根据这个规律先写出下面的结果,并说明理由 解得