1、T Th he e O Op pt ti ic cs s o of f S Sp pe ec ct tr ro os sc co op py y光光谱谱学学基基础础教教程程The Optics of SpectroscopyA Tutorial by J.M.Lerner and A.Thevenon第第1章章 衍衍射射光光栅栅:刻刻划划型型和和全全息息型型1.1 基础公式1.2 角色散1.3 线色散1.4 波长和衍射阶次1.5 分辨“能力”1.6 闪耀光栅1.6.1 Littrow条件1.6.2 效率曲线1.6.3 效率和阶次1.7 衍射光栅和杂散光1.7.1 散射光1.7.2 鬼线1.8
2、光栅的选择1.8.1 什么时候选择全息光栅1.8.2 什么时候选择刻线光栅第第2章章:单单色色仪仪和和摄摄谱谱仪仪2.1 基本组成2.2 FastieEbert型配置2.3 CzernyTurner型配置2.4 CzernyTurner/FastieEbert 型的PGS差2.4.1 像差校正平面光栅2.5 凹面像差校正全息光栅2.6 单色仪配置中计算和2.7 单色仪的光学部分2.8 光开口阻挡和入口、出口“瞳孔”2.9 孔径比(f值,f数)和数值孔径2.9.1 透镜系统的f数2.9.2 光谱仪的F数2.9.3 放大率和光通量密度2.10 出口狭缝宽度和扭曲失真2.11 狭缝高度的放大倍数2.
3、12 光谱带宽和分辨率2.12.1 狭缝(P1()的影响2.12.2 衍射效应(P2()的影响2.12.3 成像偏差(P3()的影响2.12.4 计算仪器线形的半高全宽(FWHM)2.12.5 像宽和阵列探测器2.12.6 讨论2.13 阶次和分辨率2.14 色散和最大波长2.15 阶次和色散值2.16 如何选择单色仪和摄谱仪第第3章章:光光谱谱仪仪的的光光通通量量和和光光展展量量3.1 定义3.1.1 光展量介绍3.2 系统的相对光通量3.2.1 光展量的计算3.3 进入光谱仪的光流量3.4 采用小直径光纤光源时整套系统的优化实例3.5 采用宽光源时整套系统的优化实例3.6 光通量和带宽随狭
4、缝宽度的变化3.6.1 连续光谱光源3.6.2 离散光谱光源第第4章章:光光学学信信噪噪比比和和杂杂散散光光4.1 随机杂散光4.1.1 光谱仪的光学信噪比4.1.2 信号的量化,u4.1.3 杂散光的量化d和信噪比u/d4.1.4 信噪比的优化4.1.5 信噪比优化实例4.2 直接杂散光4.2.1 光谱仪的错误收集方式4.2.2 二次进入光谱4.2.3 光栅鬼线4.3 信噪比和狭缝尺寸4.3.1 单级单色仪和连续谱光源4.3.2 单级单色仪和单色光光源4.3.3 双级单色仪和连续谱光源4.3.4 双级单色仪和单色光光源第第5章章:波波长长与与阵阵列列探探测测器器上上像像素素位位置置的的关关系
5、系5.1 确定焦平面上给定位置对应的波长5.1.1 分析与结论5.1.2 确定一个已知波长在焦平面上的位置第第6章章:入入口口光光学学6.1 入口光学的选择6.1.1 基础公式的回顾6.2 建立单色仪系统的光轴6.2.1 所需物品6.2.2 步骤6.3 光信号进入光谱仪6.4 入口光学实例6.4.1 与小光源匹配的光学开口6.4.2 与宽光源匹配的光纤开口6.4.3 光源的缩小成像6.5 场透镜的使用6.6 针孔相机效应6.7 空间滤镜附附录录致谢参考文献第第1章章 衍衍射射光光栅栅:刻刻划划型型和和全全息息型型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种
6、是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled&Holographic Handbook).经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。1.1 基基础础公公式式 在介绍基础公式前,有必要简要说明单色光和连续谱。提提示示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正
7、灯。这些即为大家所熟知的“线光源”或者“离散线光源”。提提示示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。定定义义单单位位-(alpha)入射角度-(beta)衍射角度k-衍射阶数整数n-刻线密度刻线数每毫米DV-分离角度0-折射率无单位-真空波长纳米0-折射率为 0介质中的波长 其中0=/0 1 nm=10-6 mm;1 mm=10-3 mm;1 A=10-7 mm 最基础的光栅方程如下:(1-1)在大多数
8、单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角DV成为常数,由下式决定,(1-2)对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:(1-3)假定DV值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。图 1.1 单色仪结构示意 图 1.2 摄谱仪结构示意LA=入射臂长度LB=波长ln处出射臂长度bH=光谱面法线和光栅面法线的夹角LH=光栅中心到光谱面的垂直距离 表1.1给出了a和b 如何随分离角改变,是以图1.1中单色仪为例,在光栅刻线数1200gr/mm的,衍射波长500nm的条件下计算得到的。表表1.1 1200gr
9、/mm光光栅栅的的一一阶阶衍衍射射波波长长500nm处处入入射射角角、衍衍射射角角随随分分离离角角DV的的变变化化DV017.45817.458(Littrow)1012.52622.526207.73627.736245.86129.861303.09433.09440-1.38238.61850-5.67044.3301.2 角角色色散散 rad/nm(1-4)d=两个不同波长衍射后角度的差值(弧度)d=两个波长的差值(nm)1.3 线线色色散散 线色散定义为聚焦平面上沿光谱展开方向单位长度对应的光谱宽度,单位是nm/mm,/mm,cm-1/mm。以两台线色散不同的光谱仪为例,其中一台将一
10、段0.1nm宽的光谱衍射展开为1mm,而另一台则将10nm宽的光谱衍射展开为1mm。很容易想象,精细的光谱信息更容易通过第一台光谱仪得到,而非第二台。相比于第一台的高色散,第二台光谱仪只能被称为低色散仪器。线色散指标反映了光谱仪分辨精细光谱细节的能力。中心波长l在垂直衍射光束方向的线色散可表示为:nm/mm(1-5)式中LB为等效出射焦距长度,单位mm,而dx是单位间隔,单位mm。参见图1.1。单色仪中,LB为聚焦镜到出口狭缝的距离,或者当光栅为凹面型时光栅到出口狭缝的距离。因此,线色散与cosb成正比,而与出射焦长LB、衍射级数k以及刻线密度n这些参数成反比。对于摄谱仪而言,任一波长的线色散
11、可通过衍射方向垂直光谱面的波长ln其色散值经倾斜角(g)的余弦修正得到。图1.2给出了“平场”摄谱仪的结构,通常它同线阵二极管配合使用。线色散:(1-6)(1-7)(1-8)1.4 波波长长和和衍衍射射阶阶次次 图1.3给出了摄谱仪中聚焦光谱面上光谱范围从200nm到1000nm的一级衍射谱。当光栅刻槽密度n、a 以及b均已知的情况下,根据式(1-1)得到:k=常数 (1-9)即当衍射级数k值变为两倍原值时,l减半。依此类推。图1.3 色散和衍射级数 以一台可产生波长范围从20nm到1000nm的连续谱光源为例,这一连续谱进入光谱仪分光后,在光谱面上波长800nm的一阶衍射位置上(参看图1.3
12、),其他三个波长400nm、266.6nm、200nm也会出现,从而能够被探测器测得。为了仅仅对波长800nm进行测量,必须采用滤色片来消除高阶衍射。波长范围从200nm到380nm的一阶衍射测量通常不需要滤色片,原因在于波长数值小于190nm的光均被空气吸收。但是如果光谱仪内部为真空或者填充氮气,这种情况下高阶滤色片又必不可少。1.5 分分辨辨“能能力力”分辨能力是一个理论概念,由下式给出(无单位)(1-10)式中,dl为两个强度相等的光谱线之间的波长间距。因此,分辨率指标代表光谱仪甄别相邻谱线的能力。如果两条谱线谱峰之间的距离满足其中一条谱线谱峰位于另一条谱线谱峰的最近极小值处,即认为两个
13、谱峰被很好的分辨出来,这一规则被称为瑞利判据(“Rayleigh criterion”)。R可进一步表示为:(1-11)=待检测谱线的中心波长Wg=光栅上光照射区域的宽度N=为光栅的刻槽总数 不要将分辨能力“R”这一数值量与光谱仪的分辨率或者光谱带宽这些参数混淆(参看第2章)。理论上讲,一片刻线密度为1200gr/mm、宽度110mm的光栅,当采用它的一级衍射光时,分辨能力的数值通过计算得到R=1200110=132,000。因此,在波长为500nm处,光谱带宽等于 然而,实际情况中仪器的几何尺寸由式(1-1)决定。改写为k的表达(1-12)光栅上刻线的总宽度Wg为 ,因此,(1-13)式中,
14、(1-14)将式(1-12)和(1-13)代入式(1-11)中,得到分辨能力亦可以表示为:(1-15)因此,光栅的分辨能力取决于:光栅上刻线区域的总宽度所关注的中心波长工作时的几何值(入射角、衍射角)由于光谱带宽还取决于光谱仪的狭缝宽度以及系统的校正,因此上述情况是100%的理论情况,即系统的衍射极限(更深入的讨论请参看 第第2章章)。1.6 闪闪耀耀光光栅栅 闪耀定义为将一段光谱的衍射最大转移到其他衍射阶次而非零阶。通过特殊设计,闪耀光栅能够实现在特定波长的最大衍射效率。因此,一片光栅的闪耀波长可以是250nm或者1mm等等,这取决于刻槽几何尺寸的选择。闪耀光栅其刻槽断面为直角三角形,其中一
15、个锐角为闪耀角w,如图1.4所示。然而,110的顶角在闪耀全息光栅中同样可能出现。选择不同的顶角大小能够优化光栅的整个效率曲线。1.6.1 Littrow条条件件 闪耀光栅的几何尺寸可以通过满足Littrow条件的情况下计算得到。Littrow条件是指入射光和衍射光处于自准直状态(如a=b),即入射光线和出射光线沿同一路径。在这一条件下,假定“闪耀”波长为B.(1-16)比如,1200gr/mm光栅闪耀波长为250nm且衍射阶次为一阶时,闪耀角(w)等于8.63。图1.4 闪耀光栅的刻槽断面示意图,“Littrow条件”1.6.2 效效率率曲曲线线 除非特别声明,衍射光栅的效率在Littrow
16、条件下某一已知波长处测得。绝对效率(%)=输出能量/输出能量*100%(1-17)相对效率(%)=光栅效率/反射效率*100%(1-18)相对效率测量需要将反射镜表面镀膜(膜层材料与光栅表面反射膜层材料相同),并且采用与光栅相同的角度设置。图5a和5b分别给出了闪耀刻线光栅和非闪耀全息光栅的典型效率曲线。一般而言,闪耀光栅的效率在2/3闪耀波长处和1.8倍闪耀波长处减小为最大值的一半。(a)刻线闪耀光栅的典型效率曲线(b)非闪耀全息光栅的典型效率曲线1.6.3 效效率率和和阶阶次次 一片闪耀光栅不仅有一阶闪耀角,而且也有高阶闪耀角。比如,一片一阶闪耀波长为600nm的光栅,同样也有二阶闪耀波长
17、300nm,以此类推更高阶次。高阶衍射效率通常与一阶衍射效率趋势相同。对一片一阶闪耀的光栅而言,每个阶次的最大效率值随着阶次k的增加而减小。衍射效率也随着光栅使用时偏离Littrow条件(ab)程度的增加而逐渐减小。全息光栅能够通过设计刻槽的形状来消除高阶衍射的影响。根据这一性质,通过离子刻蚀工艺制作的浅槽(laminar)光栅其效率曲线在紫外(UV)和可见(VIS)波段能够显著改善。提示:光栅是非闪耀的并不意味着它的效率较低。参见图1.5b,图中给出了一片1800gr/mm正弦型刻槽全息光栅的衍射效率曲线。1.7 衍衍射射光光栅栅的的杂杂散散光光 除被测波长外探测器接收到的其他波长(通常包括
18、一种或者多种“杂散光”)统称为杂散光。1.7.1 散散射射光光散射光可能由于下列原因造成:由于光学元件表面的缺陷造成的随机散射光由于刻划光栅刻槽时的非周期失误造成的聚焦散射光 1.7.2 鬼鬼线线 如果衍射光栅上存在周期性刻划失误,那么鬼线(并非散射光)将聚焦在衍射平面上。鬼线强度由下式给出:(1-19)其中,IG=鬼线强度IP=母光强度n=刻线强度k=阶次e=刻槽中失误的位置 鬼线在单色仪的色散平面上聚焦并成像。全息光栅的杂散光水平一般比经典刻线光栅的1/10还要小。杂散光通常是非聚焦的,并且出现在2p 全角度各个方向。全息光栅没有鬼线,因为它不可能出现周期性的刻划失误。因此,它是克服鬼线问
19、题最好的解决方案。1.8 光光栅栅的的选选择择1.8.1 什什么么时时候候选选择择全全息息光光栅栅1.当光栅是凹面的。2.当用到激光时,比如拉曼光谱、激光激发荧光光谱等。3.刻线密度必须不小于1200gr/mm(最高可到6000gr/mm,尺寸可达120mm140mm)而且光谱范围为近紫外、可见和近红外的任何时候。4.当光谱工作范围在紫外波段,波长小于200nm甚至到3nm时。5.实现高分辨率的方法中,高刻线密度光栅优于高衍射阶次的低刻线密度光栅。6.离子刻蚀全息光栅能够适用的任何场合。1.8.2 什什么么时时候候选选择择刻刻线线光光栅栅1.工作波长高于1.2mm的红外波段,且无法选用离子刻蚀
20、全息光栅。2.需要低刻槽密度的场合,如刻槽密度小于600gr/mm。请记住,鬼线及相应的杂散光强度正比于阶次和刻槽密度乘积的平方(式(1-19)中的n2和k2)。尽量避免使用高刻线密度或者高衍射阶次的刻线光栅。第第2章章 单单色色仪仪和和摄摄谱谱仪仪2.1 基基本本组组成成 在光源的所有波长上,单色仪和摄谱仪系统在出口平面上形成入口狭缝的像。实现这一功能有很多种配置设计,在这里仅仅讨论最常见包含平面光栅系统(PGS)和像差修正全息光栅(ACHG)系统。定义LA 入射臂的长度LB 出射臂的长度h 入射狭缝的高度h 入射狭缝的像高度a 入射角b 衍射角w 入射狭缝的宽度w 入射狭缝的像宽度Dg 圆
21、形光栅的半径Wg 矩形光栅的宽度Hg 矩形光栅的高度 2.2 Fastie-Ebert型型配配置置 Fastie-Ebert型仪器主要由一片面积很大的球面反射镜和一片衍射光栅组成(参看图2.1)。首先,反射镜的一部分收集并准直将要入射到平面光栅上的光。然后,反射镜的另一部分将衍射分光后的光线聚焦并使之在出射平面上成入口狭缝的像。这是一类造价低廉、非常常见的设计,但是由于系统偏差如球面偏差(spherical aberration)、彗差(coma)、散光偏差(astigmatism)以及非平面焦平面等,它在离轴光线的成像质量方面能力有限。图2.1 Fastie-Ebert 型配置2.3 Cze
22、rny-Turner型型配配置置 Czerny-Turner(CZ)型单色仪由两片凹面反射镜和一片平面衍射光栅组成(参看图2.2)。虽然这两片反射镜各自的功能与Fastie-Ebert型配置中的单片球面反射镜的功能相同,如首先准直入射光线(反射镜1),然后聚焦从光栅反射的色散分离光线(反射镜2),但是Czerny-Turner型配置中反射镜的尺寸却可以根据需要改变。采用非对称几何学,Czerny-Turner型配置能够设计实现平面光谱面以及在特定波长上良好的彗差修正。但球面偏差和散光偏差在所有波长上依然存在。采用CZ配置,也能够设计与大通量光学相匹配的系统。图2.2 Czerny-Turner
23、 型配置2.4 Czerny-Turner/Fastie-Ebert型型的的PGS偏偏差差 PGS摄谱仪存在某些偏差,降低了光谱分辨率、空间分辨率以及信噪比等指标。最突出的偏差有散光偏差、彗差、球面偏差以及散焦(defocusing)。PGS仪器常常离轴使用,因此偏差在每个平面上都有所不同。本书并不打算详细回顾这些偏差的概念和细节1,但是在考虑这些偏差产生的效应时,理解光路差(OPD)的概念是很有帮助的。本质上,光路差(OPD)是实际产生的波前和没有偏差的条件下应该得到的“参考波前”之间的差别。这一参考波前是以像为中心的球面或者成像在无穷远处时的平面。比如:散焦是指光线在探测器表面外的另一个平
24、面上聚焦,从而造成不清晰成像,降低了光谱带宽、空间分辨率和光信号的信噪比等参数。最常见的一个实例就是球面波前入射到图2.2中的反射镜M1上。当PGS单色仪采用一套单出口狭缝和一支光电倍增管(PMT)探测器时,散焦不会造成影响。然而,未修正的PGS仪器其聚焦面为曲面,从而采用平面线性二极管阵列时在探测器的两端会受到散焦的影响。如图2.2所示的几何修正CZ配置几乎消除了这一问题。散焦带来的OPD随数值孔径的平方改变。彗差是PGS仪器的离轴特性导致的结果,如图2.3所示由于光线在色散平面上扭曲从而表现为谱线的扩张变形。彗差是造成光学带宽和光信号信噪比这些参数降低的原因。彗差带来的OPD随数值孔径的立
25、方变化。在CZ配置中如图2.2所示,可以通过计算一个合适的几何尺寸从而在波长上修正彗差的影响。图2.3 彗差效应 球面偏差是指非光学平面中心出射的光线聚焦在光学平面中心出射光线的焦点上这一情况(参看图2.4)。球面偏差导致的OPD随数值孔径的4次方变化,而且不使用非球面光学是无法修正的。图2.4 球面偏差效应 散光偏差是离轴几何的特性。在这种情况下,平面波以一定的入射角照射在球面反射镜上(如图2.2中的反射镜M2),这时反射镜出现两个焦点:切面(tangential)焦点Ft和矢面(sagittal)焦点Fs。散光偏差带来的效应是入口狭缝处的点光源在出口处成垂直于色散平面的线型像(参看图2.5
26、),从而阻止了空间分辨率的提高并且由于狭缝高度的增加而降低了光信号的信噪比。散光偏差导致的OPD随数值孔径的平方和离轴角度的平方变化,并且不使用非球面光学是无法修正的。图2.5“离轴”使用凹面反射镜时的散光偏差效应2.4.1 像像差差校校正正平平面面光光栅栅 全息光栅的最新进展使得球面反射镜CZ型光谱仪中特定波长上的所有偏差能够被完全修正,并且在一个较宽的波长范围内能够最大程度地缓解偏差的影响。2.5 凹凹面面像像差差校校正正全全息息光光栅栅 这一类型的单色仪和摄谱仪都仅仅使用一单片全息光栅,而没有其他辅助光路。在这一类仪器中,光栅不仅分离不同波长的光,而且对入射光进行聚焦。由于设计中仅仅采用
27、了一个光学元件,这类仪器造价低廉、而且外形紧凑。图2.6a给出了ACHG单色仪的结构,而图2.6b给出了ACHG摄谱仪的结构。其中,焦平面的位置由下列参数来决定:H-垂直光谱面方向和光栅法线方向的夹角LH-从光栅中心到光谱面的垂直距离 (a)ACHG单色仪(b)ACHG摄谱仪2.6 单单色色仪仪配配置置中中计计算算和和?从式(1-2)得到,(为常数)根据此式和式(1-3),(2-1)根据式(2-1)和(1-2)能够分别决定a和b。参看表2.2中的实例。提提示示:实际中,可实现的最大波长受光栅的机械旋转范围决定。这意味着光栅的刻线密度增加一倍时,相应的光谱仪光谱范围减小一半。(参看第2.14节)
28、.2.7 单单色色仪仪的的光光学学部部分分 要理解如何评价整套单色仪系统,有必要从传输光学部分开始,从光源到出射狭缝(见图2.7)。这里我们给出“不折叠”的系统示意图,以直线光路的形式展示。图2.7 典型单色仪系统AS-光开口阻挡L1-透镜1M1-反射镜1M2-反射镜2G1-光栅p-透镜L1的物距q-透镜L1的像距F-透镜L1的焦距(物体无穷远处时的像距)d-透镜的光开口直径(图中L1)-半角s-光源的面积s-光源其像的面积2.8 光光开开口口阻阻挡挡和和入入口口、出出口口“瞳瞳孔孔”光开口阻挡(AS)限制通过这一开口的锥形光通量,它通常靠近另一个光学组件。“瞳孔”或者指光开口阻挡,或者指光开
29、口阻挡的像。图2.7中入口“瞳孔”是光源通过透镜L1成的虚像。光谱仪的入口“瞳孔”是光栅(G1)通过反射镜M1在入射狭缝处的成像。入口光学部分的出口“瞳孔”是在光谱仪入口狭缝位置的AS本身。光谱仪的出口“瞳孔”是光栅通过反射镜M2在出口狭缝处的成像。2.9 孔孔径径比比(f值值、f数数)和和数数值值孔孔径径 光学元件的光收集能力可以用数值孔径(NA)来严格表示。数值孔径的公式表达为:其中m是折射率(空气中m=1)f数可表达为:(2-3)表表2.1 f数数、半半角角和和数数值值孔孔径径之之间间的的关关系系f数数f/2f/3f/5f/7f/10f/15n(degrees)14.489.65.74.
30、02.91.9NA0.250.160.100.070.050.032.9.1 透透镜镜系系统统的的f数数 f数也常常用相距或者物距与“瞳孔”直径的比值来表示。当透镜的物距和像距均有限时(如图2.7),存在从光源到透镜L1(直径为AS)的等效f数,由下式给出:等效f数in=P/入口“瞳孔”直径=P/AS的像大小(2-4)以及从L1到入口狭缝的等效f数:等效f数out=q/出口“瞳孔”的直径=q/AS(2-5)在书中所有的章节中,f数的计算永远遵循入口与出口“瞳孔”相等且等于透镜或者光栅的光开口阻挡,而且距离的确定均从透镜或者光栅的中心起。当根据上述方法计算得到的f数数值等于f/2或者更大(比如:
31、f/3、f/4等)时,这一近似方法才可靠,因为此时sinWtanW的关系成立。但是,如果光学元件的工作f数远小于f/2,那么f数则需先通过半角得到数值孔径的方法来计算。2.9.2 光光谱谱仪仪的的f数数 由于入射角a总是与衍射角b的符号或者数值不同(除了Littrow条件下的情况),光栅的映射面积随波长而改变,而且取决于从入口狭缝考虑还是出口狭缝考虑。在图2.8(a)和2.8(b)中,W和W是光栅分别在入口狭缝和出口狭缝处得到的映射宽度。为了计算得到矩形光栅光谱仪的f数,首先必须计算出“等效直径”,包括入口狭缝处的D和出口狭缝处的D。通过将光栅的映射面积转换成圆盘的面积从而计算出直径D和D。W
32、g=Wg cosa=入口狭缝处光栅的映射面积 (2-6)Wg=Wg cosb=出口狭缝处光栅的映射面积 (2-7)因此,在光谱仪中,f数in不等于f数out。f数in=LA/D(2-8)f数out=LB/D(2-9)其中,对于矩形光栅,D和D分别由下式给出:(2-10)(2-11)对于圆形光栅,D和D分别由下式给出:(2-12)(2-13)表2.2给出了f数随波长的变化。表表2.2 f数数in和和f数数out的的计计算算值值,计计算算条条件件为为Czerny-Turner配配置置、光光栅栅面面积积6868mm、刻刻线线数数1800gr/mm、LA=LB=F=320nm以以及及DV=24。(nm
33、)f数数inf数数out2001.4022.604.174.343205.1229.124.184.4650015.399.394.254.7468026.7350.734.415.2480035.4059.404.625.842.9.3 放放大大率率和和光光通通量量密密度度 在任何光谱仪系统中,光源在入口狭缝(开口)处成像,入口狭缝又在出口狭缝处成像,并照射在探测器、样品上等。这个过程不可避免地导致了一个或者多个像的放大或者缩小。根据图2.7中光源通过透镜L1在入口狭缝处成像的实例,放大率可由下列等式来确定:(2-14)类似可得,光通量密度由像中的光子数及其所占的面积决定,因此如果测量过程中
34、用到了光通量密度敏感的探测器或者样品,放大率的变化将十分重要。一次成像过程中光通量密度的变化可以用物的面积S和像的面积S之比来决定,根据这一规律可以得到下列等式:(2-15)这些关系式表示像和物所占的面积比由f数的平方来决定。因此,出口处的f数决定了成像处的光通量密度。使用过摄影胶片作为探测部件的人们对这些关系式很熟悉,它们可用来计算曝光时间以实现一定的信噪比。2.10 口口狭狭缝缝宽宽度度和和扭扭曲曲失失真真 扭曲失真是指光学组件对光源的放大(或者缩小)在横向和纵向放大倍数不同,参看图2.9。图2.9 (a)纵向和(b)横向的放大 基于衍射光栅的仪器,入口狭缝在出口平面并不是1:1成像。(除
35、了Littrow条件的情况,而且衍射光线垂直于色散平面且有LA=LB。)这意味着实际上在所有商品化仪器中,设定入口狭缝和出口狭缝宽度相等的传统准则并不是在任何情况下都合适。水平放大倍数取决于入射角a和衍射角b的余弦值,以及LA和LB的比值(参看式(2-16)。此外,放大倍数还与波长相关(参看表2.3)。(2-16)表2.3给出了a、b、色散大小、入口狭缝其像的水平放大倍数以及光谱带宽之间的关系。表表2.3 Czerny-Turner单单色色仪仪中中色色散散值值、水水平平放放大大倍倍数数和和光光谱谱带带宽宽的的关关系系。其其中中,LA=320mm,LB=320mm,DV=24,n=1800gr/
36、mm,入入口口狭狭缝缝宽宽度度=1mm。波波长长(nm)(度度)(度度)色色散散值值(nm/mm)水水平平放放大大倍倍数数光光谱谱带带宽宽*(nm)200-1.422.601.601.081.742601.8425.841.561.111.743205.1229.121.461.141.733808.4732.471.411.171.7244011.8835.881.341.211.7050015.3939.391.271.251.6756019.0143.011.191.291.6462022.7846.781.101.351.6068026.7350.731.001.411.5574030
37、.9154.910.881.491.4980035.4059.401.601.601.42 出射狭缝的宽度匹配入射狭缝的像 *随着光栅倾斜角度的增加,系统的彗差随之变大。因此,尽管800nm处的光谱带宽参数要优于200nm处,这一优势在f数小于f/8的系统中对用户而言意义不大。2.11 狭狭缝缝高高度度的的放放大大倍倍数数 狭缝高度的放大倍数正比于入射臂和出射臂的长度比值,并且与波长无关(不考虑光学组件的成像偏差会产生影响)。(2-17)提提示示:几何放大并不是光学成像偏差!2.12 光光谱谱带带宽宽和和分分辨辨率率 一般而言,光谱带宽(Bandpass)和分辨率都是用来表征仪器分辨相邻谱线能
38、力的参数。假定光源是连续的,仪器的光谱带宽是指能够被分开的光谱间距。这取决于许多因素,包括光栅的宽度、系统成像偏差、探测器的空间分辨率以及入口狭缝和出口狭缝的宽度。如果光源发射的光谱仅仅包含单色波长l0(见图2.10),这一光信号被一台理想的光谱仪接收分析,那么光谱仪的输出应该等于光源的发射谱(见图2.11),即在l0处的完美谱线。实际情况中,光谱仪并不是理论上的理想情况,它会对纯单色光产生明显的光谱展宽。单色光展宽为有限宽度的谱线,其宽度称为“仪器线形”(instrumental line profile),或者是仪器光谱带宽(参看图2.12)。采用固定光栅摄谱仪的配置分析几乎为单波长的光信
39、号如单模染料激光器发出的光束,可得到仪器线形。在给定入口和出口狭缝参数的前提下,根据待测单色波长来设置光栅的倾斜角度,同时激光器给出不同的波长。探测器的输出被记录并显示出来。测量结果是强度随波长的分布。对于一台单色仪,引入单色光源并旋转光栅能够得到相同的结果。于是,光谱带宽可定义为单色光输入时的半高全宽(FWHM)。任何光谱结构均可认为是无数个不同波长的单色光之和。因此,仪器线形、实际光谱和记录光谱之间存在一定的关系。假设B(l)是待分析光源的真实光谱。假设F(l)是光谱仪记录下的光谱。假设P(l)是仪器线形。(2-18)记录光谱F(l)是待测光谱和仪器线形的卷积。仪器线形与多个参数相关:入口
40、狭缝的宽度 出口狭缝的宽度或者采用多通道探测器时单个像素的大小 衍射现象成像偏差系统组件的质量和准直情况 每个影响参数可以用一个特殊函数Pi(l)来表达,每个函数在忽略其他参数的情况下得到。综合的仪器线形P(l)是这些单个函数的总卷积。(2-19)2.12.1 狭狭缝缝(P1()的的影影响响 如果狭缝宽度为有限值,而且没有其他的效应使得谱线展宽,并假设:Went=入口狭缝其像的宽度Wex=出口狭缝的宽度或者采用多通道探测器时单个像素的宽度Dl1=线色散 WentDl2=线色散 Wex 由此得到狭缝对仪器线形的影响是两个狭缝函数的卷积(参看图2.13)。图2.13 入口狭缝和出口狭缝的卷积2.1
41、2.2 衍衍射射效效应应P2()的的影影响响 如果两个狭缝足够窄而且成像偏差可忽略,那么仪器线形是一个经典衍射线形。在这种情况下,系统的分辨率等于波长l除以光栅分辨能力的理论值R(参看式(1-11))。2.12.3 成成像像偏偏差差(P3()的的影影响响 如果两个狭缝足够窄,而且成像偏差造成的谱线展宽较衍射造成的谱线展宽更突出,那么仪器线形的展宽量进一步增大。2.12.4 计计算算仪仪器器线线形形的的半半高高全全宽宽(FWHM)实际情况中,F(l)的FWHM由许多谱线展宽因子的卷积决定,这些因子包括:dl(分辨率):光谱仪的极限分辨率,取决于由系统成像偏差和衍射效应所决定的仪器线形参数。dl(
42、狭缝):由光谱仪有限的狭缝宽度决定的光谱带宽。dl(谱线本身):待测谱线本身的FWHM。假定谱线为高斯线形,我们得到关于FWHM的如下近似关系:(2-20)一般而言,大多数光谱仪并非工作在分辨率为极限值的状态,因此狭缝成为影响线形的主要因素。从图2.13看出,与狭缝相关的FWHM,它取决于入口狭缝其像的宽度和出口狭缝宽度中的较大项。如果两个狭缝的宽度精确对应,而且成像偏差的影响与狭缝宽度相比可以忽略,那么FWHM等于谱线中强度值降为峰值一半时对应的谱宽。(但是,成像偏差还是对谱线展宽产生影响)。光谱带宽则等于:BP=FWHM 线色散值(入口狭缝其像的宽度和出口狭缝宽度中的较大项)。在第2.10
43、节中,给出了光谱仪成像放大倍数的计算。通过式(2-16)来计算入口狭缝其像的宽度并乘以色散值(式(1-5)),从而得到系统的光谱带宽。光谱带宽由下式给出:(2-21)设定最优的出口狭缝宽度,能够获得最大的光输出并且避免光谱带宽的损失。从式(2-21)和式(1-5),我们发现一个有趣的规律:光谱带宽随cosa改变 色散值随cosb改变 2.12.5 像像宽宽和和阵阵列列探探测测器器 由于在出口平面上的像宽随波长变化,因此阵列型探测器的使用者必须注意每个光谱带宽上的像素个数。通常,采用3-6个像素来决定一个光谱带宽。如果成像的放大倍数增加1.5倍,那么相应的每个光谱带宽对应4-9个像素。进一步讨论
44、波长和像素位置的关系,请参看第5章。决定光谱带宽的FWHM等于入口狭缝成像的某个宽度,这个宽度内通常包含80%待测波长上的光子数;其余由于在谱峰的基底而被忽略。因此,任何成像放大,相当于引入更多的像素同时展宽待测信号的基底。2.12.6 讨讨论论1.单色光时的光谱带宽根据定义,光谱宽度无限窄的单色光其谱宽小于根据式(2-20)决定的仪器光谱带宽。(一条谱宽非常窄的谱线通常称为“线型谱”,因为通过光谱仪观察它的结果就是这样。)在这种情形中,所有的光子均为同一波长,波长值与它们在出口平面上的分布无关。因此,入口狭缝的像将仅仅由同一波长的光子组成,即使存在有限的FWHM。因此,这一情形下不能认为围绕
45、中心波长的光谱展开是相应的光谱带宽。比如,待测单色光为250nm,光谱仪的光谱带宽设置成FWHM为5nm,这并不意味着测量结果是250nm2.5nm,因为待测单色光中没有除了250nm以外的其他波长。然而,这一结果说明,一条光谱测量结果(波长强度图)中出现“波峰”和显而易见的“5nm”FWHM可能是由于仪器原因而不是光谱本身造成的展宽。2.有限谱宽“线”光源时的光谱带宽有限光谱带宽的发射线型光谱几乎在所有类型的光谱测量中都可以遇到,包括发射谱、拉曼谱、荧光谱和吸收谱。在这些情形中,测量得到的光谱似乎存在发射(或者吸收)带。然而,如果采用一台更高分辨率的光谱仪来分析其中的一条谱“线”,我们就会发
46、现超过某个特定的带宽值后,谱线带宽停止减小,意味着达到了被测光本身的谱宽。这取决于由式(2-20)决定的光谱仪带宽和待测光本身的谱宽之间的大小关系。如果待测光本身的谱宽大于光谱仪的带宽,那么对于光谱仪来说,待测发射“线型”谱好比连续谱的一部分。在这种情形下,光谱带宽实际上被看作围绕中心波长0.5BP的光谱展宽。实实例例1:图2.14光谱结果中前两个谱峰相距32mm。第一个谱峰的FWHM参数与第二个谱峰的相同,但是小于第三个谱峰的FWHM。这意味着第三个谱峰自身的光谱带宽大于光谱仪的光谱带宽,从而谱峰的带宽无法减小,即使采用更高分辨率的光谱仪来分析也无济于事。而第一、二个谱峰,它们自身的光谱带宽
47、小于光谱仪测量给出的结果。测量这两个谱峰,相同的仪器工作在高带通条件下(更窄的狭缝)能够分析得到其他在低分辨条件下被湮没的“谱线”,或者是谱峰带宽的减小直到减为光谱仪的分辨极限或者谱线自身的光谱带宽为止。图2.14 光谱测量的结果片断,波长强度图,其中*BP=FWHM色散值实实例例2:如果一名科研人员在学术期刊上发现一条能够在他的光谱仪上再现的谱线,那么第一项任务就是找出谱线结果中的光谱带宽。假设这个参数没有给出,那么有必要对光谱结果进行研究。假定两个谱峰的中心波长已知,那么可以利用一把尺子尽可能准确的测量它们之间的距离。如果波长差为1.25nm而这个差别在谱图上的间距为32mm(参看图2.1
48、4),那么该谱图结果的色散值应该是1.25/32=0.04nm/mm。然后,通过测量半高全宽(FWHM)在谱图结果上对应的间距就能够计算出光谱带宽。比如说这一间距是4mm,那么光谱仪的光谱带宽是4mm0.04nm/mm=0.16nm。假设采用表2.4标题所描述的光谱仪进行测试,综合式(2-21)和表2.5中的最大波长结果,那么表中列出的组合能够得到0.16nm的光谱带宽:表表2.4 焦焦距距320mm的的Czerny-Turner型型光光谱谱仪仪得得到到0.16nm光光谱谱带带宽宽时时不不同同的的色色散散值值和和狭狭缝缝宽宽度度组组合合光光栅栅刻刻线线密密度度(g/mm)色色散散值值(nm/m
49、m)入入口口狭狭缝缝宽宽度度(microns)3009.2176004.63512002.37018001.510724001.1513936000.77208 最好的选择是3600gr/mm光栅,从而能够将狭缝宽度调整到最大以使得最多的光信号进入光谱仪。2.13 阶阶次次和和分分辨辨率率 如果一个给定波长在高衍射阶次上测得,比如从第一阶到第二阶,人们通常认为由于色散值成倍增加,因此分辨率极限也会成倍增加。然而,在单色仪中存在许多辅助光学元件如平面或者凹面反射镜、透镜等,实际情况中不可能实现分辨率极限的成倍增加。原因如下:随着光栅转动,系统成像偏差会改变(比如,彗差)光栅高阶次衍射会导致衍射波
50、波前的改变(对于经典刻划光栅最严重)其他系统成像偏差如球面偏差、彗差、散光偏差和成像面的扭曲都会影响光栅的性能(特别是低f数时,如f/3,f/4等)即使是半高全宽保持和低阶次测量时一样,光谱线型的劣化也常常会出现,原因在于FWHM中光子数目的减少导致谱峰的展宽。2.14 色色散散和和最最大大波波长长 对于刻线密度一定的光栅,一台光谱仪从机械角度上来说能够测量的最大波长(lmax1)取决于光栅的机械旋转极限。因此,如果从一开始刻线密度为n1的光栅,切换成另一块刻线密度为n2的光栅,新的最大波长(lmax2)为:(2-22)表表2.5典典型型光光谱谱仪仪中中最最大大波波长长随随光光栅栅刻刻线线密密