1、 物理学教程(第二版)上册习题答案 第一章质点运动学1 -1质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t t)时间内的位移为r, 路程为s, 位矢大小的变化量为r ( 或称r),平均速度为,平均速率为(1) 根据上述情况,则必有()(A) r= s = r(B) r s r,当t0 时有dr= ds dr(C) r r s,当t0 时有dr= dr ds(D) r s r,当t0 时有dr= dr = ds(2) 根据上述情况,则必有()(A) = ,= (B) , (C) = , (D) ,= 分析与解(1) 质点在t 至(t t)时间内沿曲线从P 点运动到P点
2、,各量关系如图所示, 其中路程s PP, 位移大小rPP,而r r-r表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能)但当t0 时,点P无限趋近P点,则有drds,但却不等于dr故选(B)(2) 由于r s,故,即但由于drds,故,即由此可见,应选(C)1 -2一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即(1);(2);(3);(4)下述判断正确的是()(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解表示质点到坐标原点的距离随时间的变化
3、率,在极坐标系中叫径向速率通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解故选(D)1 -3质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, a表示切向加速度对下列表达式,即(1)d v /dt ;(2)dr/dt v;(3)ds/dt v;(4)d v /dta下述判断正确的是()(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解表示切向加速度a,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分
4、量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度a因此只有(3) 式表达是正确的故选(D)1 -4一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量a起改变速度大小的作用,而法向分量an起改变速度方向的作用质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的至于a是否改变,则
5、要视质点的速率情况而定质点作匀速率圆周运动时, a恒为零;质点作匀变速率圆周运动时, a为一不为零的恒量,当a改变时,质点则作一般的变速率圆周运动由此可见,应选(B) 1 -5已知质点沿x 轴作直线运动,其运动方程为,式中x 的单位为m,t 的单位为 s求:(1) 质点在运动开始后4.0 s内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等质点在t 时间内的位移x 的大小可直接由运动方程得到:,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,
6、位移的大小和路程就不同了为此,需根据来确定其运动方向改变的时刻tp ,求出0tp 和tpt 内的位移大小x1 、x2 ,则t 时间内的路程,如图所示,至于t 4.0 s 时质点速度和加速度可用和两式计算题 1-5 图解(1) 质点在4.0 s内位移的大小 (2) 由 得知质点的换向时刻为 (t0不合题意)则所以,质点在4.0 s时间间隔内的路程为 (3) t4.0 s时1 -6已知质点的运动方程为,式中r 的单位为m,t 的单位为求:(1) 质点的运动轨迹;(2) t 0 及t 2时,质点的位矢;(3) 由t 0 到t 2内质点的位移r 和径向增量r; 分析质点的轨迹方程为y f(x),可由运
7、动方程的两个分量式x(t)和y(t)中消去t 即可得到对于r、r、r、s 来说,物理含义不同,(详见题1-1分析).解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为这是一个抛物线方程,轨迹如图(a)所示(2) 将t 0和t 2分别代入运动方程,可得相应位矢分别为 , 图(a)中的P、Q 两点,即为t 0和t 2时质点所在位置(3) 由位移表达式,得其中位移大小而径向增量题 1-6 图1 -7质点的运动方程为式中x,y 的单位为m,t 的单位为试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大
8、小和方向解(1) 速度的分量式为当t 0 时, v0x -10 m-1 , v0y 15 m-1 ,则初速度大小为设v0与x 轴的夹角为,则12341(2) 加速度的分量式为 , 则加速度的大小为设a 与x 轴的夹角为,则-3341(或32619)1 -8一升降机以加速度1.22 m-2上升,当上升速度为2.44 m-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零
9、的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 y1(t)和y2 y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度升降机厢的高度就是螺丝(或升降机)运动的路程解1(1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y1 y2 ,即 (2) 螺丝相对升降机外固定柱子下降的距离为解2(1)以升降机为参考系,此时,螺丝相对它的加速度大小ag a,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则 题 1-8
10、图1 -9质点沿直线运动,加速度a4 -t2 ,式中a的单位为m-2 ,t的单位为如果当t 3时,x9 m,v 2 m-1 ,求质点的运动方程分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决由和可得和如aa(t)或v v(t),则可两边直接积分如果a 或v不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分解由分析知,应有得 (1)由 得 (2)将t3时,x9 m,v2 m-1代入(1)、(2)得v0-1 m-1, x00.75 m于是可得质点运动方程为1 -10一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其
11、加速度aA -Bv,式中A、B 为正恒量,求石子下落的速度和运动方程分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v的函数,因此,需将式dv a(v)dt 分离变量为后再两边积分解选取石子下落方向为y 轴正向,下落起点为坐标原点(1) 由题意知 (1)用分离变量法把式(1)改写为 (2)将式(2)两边积分并考虑初始条件,有得石子速度 由此可知当,t时,为一常量,通常称为极限速度或收尾速度(2) 再由并考虑初始条件有得石子运动方程1 -11一质点具有恒定加速度a 6i 4j,式中a的单位为m-2 在t0时,其速度为零,位置矢量r0 10 mi求:(1) 在任意时刻的速度和位置矢量
12、;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图题 1-11 图分析与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量ax 和ay分别积分,从而得到运动方程r的两个分量式x(t)和y(t)由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和,两个分运动均为匀变速直线运动读者不妨自己验证一下解由加速度定义式,根据初始条件t0 0时v0 0,积分可得又由及初始条件t0 时,r0(10 m)i,积分可得由上述结果可得质点运动方程的分量式,即x 103t2y 2t2消去参数t,可得运动的轨迹方程3y 2x -20 m这是一个直线方程直线斜率,
13、3341轨迹如图所示1 -12质点在Oxy 平面内运动,其运动方程为r2.0ti (19.0 -2.0t2 )j,式中r 的单位为m,t的单位为s求:(1)质点的轨迹方程;(2) 在t11.0s 到t2 2.0s 时间内的平均速度;(3) t1 1.0时的速度及切向和法向加速度;(4) t 1.0s 时质点所在处轨道的曲率半径分析根据运动方程可直接写出其分量式x x(t)和y y(t),从中消去参数t,即得质点的轨迹方程平均速度是反映质点在一段时间内位置的变化率,即,它与时间间隔t 的大小有关,当t0 时,平均速度的极限即瞬时速度切向和法向加速度是指在自然坐标下的分矢量a 和an ,前者只反映
14、质点在切线方向速度大小的变化率,即,后者只反映质点速度方向的变化,它可由总加速度a 和a 得到在求得t1 时刻质点的速度和法向加速度的大小后,可由公式求解(1) 由参数方程x 2.0t,y 19.0-2.0t2消去t 得质点的轨迹方程:y 19.0 -0.50x2 (2) 在t1 1.00 到t2 2.0时间内的平均速度(3) 质点在任意时刻的速度和加速度分别为则t1 1.00时的速度v(t)t 12.0i -4.0j切向和法向加速度分别为(4) t 1.0质点的速度大小为则1 -13飞机以100 m-1 的速度沿水平直线飞行,在离地面高为100 m时,驾驶员要把物品空投到前方某一地面目标处,
15、问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0后,它的法向加速度和切向加速度各为多少?题 1-13 图分析物品空投后作平抛运动忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动到达地面目标时,两方向上运动时间是相同的因此,分别列出其运动方程,运用时间相等的条件,即可求解此外,平抛物体在运动过程中只存在竖直向下的重力加速度为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角或由图可知,在特定时刻t,物体的切向加速度和水平线之间的夹
16、角,可由此时刻的两速度分量vx 、vy求出,这样,也就可将重力加速度g 的切向和法向分量求得解(1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x vt,y 1/2 gt2飞机水平飞行速度v100 ms-1 ,飞机离地面的高度y100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1 -14为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为 ,他随即以仰角冲出,飞越跨度
17、达57 m,安全着陆在西岸木桥上,求:题 1-14 图(1) 柯飞车跨越黄河用了多长时间?(2) 若起飞点高出河面10 m,柯驾车飞行的最高点距河面为几米?(3) 西岸木桥和起飞点的高度差为多少?分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中分别表示飞车的最大高度和飞跃跨度.解 在图示坐标系中,有 (1) (2
18、) (3) (1) 由式(1),令 m,得飞跃时间 s(2)由式(3),令,得飞行到最大高度所需时间将代入式(2),得飞行最大高度m则飞车在最高点时距河面距离为 m m(3)将 s 代入式(2),得西岸木桥位置为 y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y方向上的运动方程应为 m + 1 -15如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角,球的抛射角,设球被抛出时的速率v0 19.6 m-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按
19、两种方式分解,如图(a)和图(b)所示.在图(a)坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g 和-g ,看似复杂,但求解本题确较方便,因为落地时有y=0,对应的时间t和x的值即为本题所求.在图(b)坐标系中,分运动看似简单,但求解本题还需将落地点P的坐标y与x的关系列出来.解 1 由分析知,在图(a)坐标系中,有 (1) (2)落地时,有y=0,由式(2)解得飞行时间为s将 t 值代入式(1),得m解 2 由分析知,在图(b)坐标系中,对小球 (1) (2)对点P (3)由式(1)、(2)可得球的轨道方程为 (4)落地时,应有,即解之得落地点P的x坐标为 (5)则 m联解式(
20、1)和式(5)可得飞行时间 s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16一质点沿半径为R 的圆周按规律运动,v0 、b 都是常量(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析在自然坐标中,s 表示圆周上从某一点开始的曲线坐标由给定的运动方程s s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a,而加速度的法向分量为anv2 /R这样,总加速度为a aeanen至于质点在t 时间内通过的路程,即为曲线坐标的改变量sst -s0因圆周长为2R,质点所转过
21、的圈数自然可求得解(1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为, 故加速度的大小为其方向与切线之间的夹角为(2) 要使ab,由可得(3) 从t0 开始到tv0 /b 时,质点经过的路程为因此质点运行的圈数为1 -17一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比在t2.0 时测得轮缘一点的速度值为4.0 m-1求:(1) 该轮在t0.5的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0内所转过的角度分析首先应该确定角速度的函数关系kt2依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k,(t)确定后,注意到
22、运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移解因R v,由题意t2 得比例系数所以 则t0.5 时的角速度、角加速度和切向加速度分别为总加速度 在2.0内该点所转过的角度1 -18一质点在半径为0.10 m的圆周上运动,其角位置为,式中 的单位为rad,t 的单位为(1) 求在t 2.0时质点的法向加速度和切向加速度(2) 当切向加速度的大小恰等于总加速度大小的一半时, 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可
23、得到解(1) 由于,则角速度在t 2 时,法向加速度和切向加速度的数值分别为(2) 当时,有,即得 此时刻的角位置为(3) 要使,则有t 0.551 -19一无风的下雨天,一列火车以v120.0 m-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75角下降求雨滴下落的速度v2 (设下降的雨滴作匀速运动)题 1-19 图分析这是一个相对运动的问题设雨滴为研究对象,地面为静止参考系,火车为动参考系v1 为相对 的速度,v2 为雨滴相对的速度,利用相对运动速度的关系即可解解以地面为参考系,火车相对地面运动的速度为v1 ,雨滴相对地面竖直下落的速度为v2 ,旅客看到雨滴下落的速度v2为相对
24、速度,它们之间的关系为 (如图所示),于是可得1 -20如图(a)所示,一汽车在雨中沿直线行驶,其速率为v1 ,下落雨滴的速度方向偏于竖直方向之前 角,速率为v2,若车后有一长方形物体,问车速v1为多大时,此物体正好不会被雨水淋湿?分析这也是一个相对运动的问题可视雨点为研究对象,地面为静参考系,汽车为动参考系如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v2的方向)应满足再由相对速度的矢量关系,即可求出所需车速v1题 1-20 图解由图(b),有而要使,则第二章牛顿定律2 -1如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面
25、向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A) gsin (B) gcos (C) gtan (D) gcot 分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcot ,故选(D)求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征 2 -2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A) 不为零,但保持不变(B) 随FN成正比地增大(C) 开始随FN增大,达到某一最大值
26、后,就保持不变(D) 无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值FN范围内取值当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A)2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A) 不得小于(B) 必须等于(C) 不得大于 (D) 还应由汽车的质量m 决定分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力
27、提供,能够提供的最大向心力应为FN由此可算得汽车转弯的最大速率应为vRg因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑应选(C)2 -4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关重力的切向分量(m gcos ) 使物体的速率将
28、会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程可判断,随 角的不断增大过程,轨道支持力FN也将不断增大,由此可见应选(B)*2 -5图(a)示系统置于以a 1/4 g 的加速度上升的升降机内,A、B 两物体质量相同均为m,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A) 5/8 mg(B) 1/2 mg(C) mg(D) 2mg分析与解本题可考虑对A、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解此时A、B 两物体受力情况如图(b)所示,图中a为A、B
29、 两物体相对电梯的加速度,ma为惯性力对A、B 两物体应用牛顿第二定律,可解得F 5/8 mg故选(A)讨论对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力如以地面为惯性参考系求解,则两物体的加速度aA 和aB 均应对地而言,本题中aA 和aB的大小与方向均不相同其中aA 应斜向上对aA 、aB 、a 和a之间还要用到相对运动规律,求解过程较繁琐有兴趣的读者不妨自己尝试一下2 -6图示一斜面,倾角为,底边AB 长为l 2.1 m,质量为m 的物体从题2
30、 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为0.14试问,当为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系f(t),然后运用对t 求极值的方法即可得出数值来解取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有 (1)又物体在斜面上作匀变速直线运动,故有则 (2)为使下滑的时间最短,可令,由式(2)有
31、则可得 ,此时 2 -7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空甲块质量为m1 2.00 102 kg,乙块质量为m2 1.00 102 kg设吊车、框架和钢丝绳的质量不计试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m-2 的加速度上升;(2) 两物块以1.0 m-2 的加速度上升从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题 2-7 图分析预制板、吊车框架、钢丝等可视为一组物体处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程根据连接体中物体的多少可列出相应数目的方程式
32、结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示)当框架以加速度a 上升时,有F-( m1 m2 )g (m1 m2 )a (1)FN2 - m2 g m2 a (2)解上述方程,得F (m1 m2 )(g a) (3)FN2 m2 (g a) (4)(1) 当整个装置以加速度a 10 m-2 上升时,由式(3)可得绳所受张力的值为F 5.94 103 N乙对甲的作用力为FN2 -FN2 -m2 (g a) -1.98 103 N(2) 当整个装置以加速度a 1 m-2 上升时,得绳张
33、力的值为F 3.24 103 N此时,乙对甲的作用力则为FN2-1.08 103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大因此,起吊重物时必须缓慢加速,以确保起吊过程的安全2 -8如图(a)所示,已知两物体A、B 的质量均为m3.0kg 物体A 以加速度a 1.0 m-2 运动,求物体B 与桌面间的摩擦力(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立同时也要注意到张力方向是不同的解分别对物体和滑轮作受
34、力分析图(b)由牛顿定律分别对物体A、B 及滑轮列动力学方程,有mA g -F mA a (1)F1 -F mB a (2)F -2F1 0 (3)考虑到mA mB m, F F , F1 F1 ,a2a,可联立解得物体与桌面的摩擦力题 2-8 图讨论动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来2 -9质量为m的长平板A 以速度v在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为,求木块在长
35、平板上滑行多远才能与板取得共同速度?分析当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态根据牛顿定律可得到它们各自相对地面的加速度换以平板为参考系来分析,此时,木块以初速度-v(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得 该题也可应用第三章所讲述的系统的动能定理来解将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量木块相
36、对平板移动的距离即可求出解1以地面为参考系,在摩擦力mg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程mg ma1-ma2a1 和a2 分别是木块和木板相对地面参考系的加速度若以木板为参考系,木块相对平板的加速度a a1 a2 ,木块相对平板以初速度- v作匀减速运动直至最终停止由运动学规律有- v2 2as由上述各式可得木块相对于平板所移动的距离为解2以木块和平板为系统,它们之间一对摩擦力作的总功为式中l 为平板相对地面移动的距离由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有mv(mm) v由系统的动能定理,有由上述各式可得2 -10如图(a)所示,在一只半径
37、为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?题 2-10 图分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN 的分力来提供的,由于支持力FN 始终垂直于碗内壁,所以支持力的大小和方向是随而变的取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度解取钢球为隔离体,其受力分析如图(b)所示在图示坐标中列动力学方程 (1) (2)且有 (3)由上述各式可解得钢球距碗底的高度为可见,h 随的变化而变化2 -11 在如图(a)所示的轻滑轮上跨有一轻绳,绳的
38、两端连接着质量分别为1 kg和2 kg的物体A和B,现以50 N的恒力F向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A和B的加速度各为多少?题 2-11 图分析 在上提物体过程中,由于滑轮可以转动,所以A、B两物体对地加速度并不相同,故应将A、B和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子张力相等,且有.解 隔离后,各物体受力如图(b)所示,有滑轮 A B 联立三式,得 讨论 如由式求解,所得是A、B两物体构成的质点系的质心加速度,并不是A、B两物体的加速度.上式叫质心运动定理. 2 -12 一质量为50 g的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后物体
39、作上下振动,若以物体静平衡位置为原点,向下为y轴正向.测得其运动规律按余弦形式即,式中t以s计,y以m计,试求:(1)作用于该物体上的合外力的大小;(2)证明作用在物体上的合外力大小与物体离开平衡位置的y距离成正比.分析 本题可直接用求解,y为物体的运动方程,F即为作用于物体上的合外力(实为重力与弹簧力之和)的表达式,本题显示了物体作简谐运动时的动力学特征.解 (1)由分析知F (N)该式表示作用于物体上的合外力随时间t按余弦作用周期性变化,F0表示合力外力向下,F0表示合外力向上.(2) F.由上式知,合外力F的大小与物体离开平衡位置距离y的大小成正比.“-”号表示与位移的方向相反.2 -1
40、3一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F 120t 40,式中F 的单位为N, t的单位的在t0时,质点位于x 5.0 m处,其速度v06.0 m求质点在任意时刻的速度和位置分析这是在变力作用下的动力学问题由于力是时间的函数,而加速度adv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t);由速度的定义vdx /dt,用积分的方法可求出质点的位置解因加速度adv/dt,在直线运动中,根据牛顿运动定律有依据质点运动的初始条件,即t0 0 时v0 6.0 m-1 ,运用分离变量法对上式积分,得v6.0+4.0t+6.0t2 又因vdx /dt,并由质点运动的初始条件:t0 0 时 x0 5.0 m,对上式分离变量后积分,有x 5.0+6.0t+2.0t2 +2.0t32 -14轻型飞机连同驾驶员总质量为1.0 103 kg飞机以55.0 m-1 的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数5.0 102 N-1 ,空气对飞机升力不计,求:(1) 10后飞机的速率;(2) 飞机着陆后10内滑行的距离分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动其水平方向所受制动力F 为变力,且是时间的函数在求速率和距离时,可根据动力学方程和运动学规