1、2.2.1指数函数及其性质(一)一、选择题1函数f(x)的定义域是()A(1,)B(2,)C(,2)D解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0,所以解得1x2答案:D2函数y(x23x2)的单调递减区间是()A(,1)B(2,)C(,)D(,)解析:先求函数定义域为(o,1)(2,),令t(x)x23x2,函数t(x)在(,1)上单调递减,在(2,)上单调递增,根据复合函数同增异减的原则,函数y(x23x2)在(2,)上单调递减答案:B3若2(x2y)xy,则的值为()A4B1或C1或4D错解:由2(x2y)xy,得(x2y)2xy,解得x4y或xy,则有或1答案:选B正解:
2、上述解法忽略了真数大于0这个条件,即x2y0,所以x2y所以xy舍掉只有x4y答案:D4若定义在区间(1,0)内的函数f(x)(x1)满足f(x)0,则a的取值范围为()A(0,)B(0,)C(,)D(0,)解析:因为x(1,0),所以x1(0,1)当f(x)0时,根据图象只有02al,解得0a(根据本节思维过程中第四条提到的性质)答案:A5函数y(1)的图象关于()Ay轴对称Bx轴对称C原点对称D直线yx对称解析:y(1),所以为奇函数形如y或y的函数都为奇函数答案:C二、填空题已知y(2ax)在0,1上是x的减函数,则a的取值范围是_解析:a0且a1(x)2ax是减函数,要使y(2ax)是
3、减函数,则a1,又2ax0a(0x1)a2,所以a(1,2)答案:a(1,2)7函数f(x)的图象与g(x)()x的图象关于直线yx对称,则f(2xx2)的单调递减区间为_解析:因为f(x)与g(x)互为反函数,所以f(x)x则f(2xx2)(2xx2),令(x)2xx20,解得0x2(x)2xx2在(0,1)上单调递增,则f(x)在(0,1)上单调递减;(x)2xx2在(1,2)上单调递减,则f(x)在1,2)上单调递增所以f(2xx2)的单调递减区间为(0,1)答案:(0,1)8已知定义域为R的偶函数f(x)在0,上是增函数,且f()0,则不等式f(log4x)的解集是_解析:因为f(x)
4、是偶函数,所以f()f()0又f(x)在0,上是增函数,所以f(x)在(,0)上是减函数所以f(log4x)0log4x或log4x解得x2或0x答案:x2或0x三、解答题9求函数y(x25x4)的定义域、值域和单调区间解:由(x)x25x40,解得x4或x1,所以x(,1)(4,),当x(,1)(4,),x25x4R,所以函数的值域是R因为函数y(x25x4)是由y(x)与(x)x25x4复合而成,函数y(x)在其定义域上是单调递减的,函数(x)x25x4在(,)上为减函数,在,上为增函数考虑到函数的定义域及复合函数单调性,y(x25x4)的增区间是定义域内使y(x)为减函数、(x)x25x
5、4也为减函数的区间,即(,1);y(x25x4)的减区间是定义域内使y(x)为减函数、(x)x25x4为增函数的区间,即(4,)10设函数f(x),(1)求函数f(x)的定义域;(2)判断函数f(x)的单调性,并给出证明;(3)已知函数f(x)的反函数f1(x),问函数yf1(x)的图象与x轴有交点吗?若有,求出交点坐标;若无交点,说明理由解:(1)由3x50且0,解得x且x取交集得x(2)令(x)3x5,随着x增大,函数值减小,所以在定义域内是减函数;1随着x增大,函数值减小,所以在定义域内是减函数又ylgx在定义域内是增函数,根据复合单调性可知,y是减函数,所以f(x)是减函数(3)因为直接求f(x)的反函数非常复杂且不易求出,于是利用函数与其反函数之间定义域与值域的关系求解设函数f(x)的反函数f1(x)与工轴的交点为(x0,0)根据函数与反函数之间定义域与值域的关系可知,f(x)与y轴的交点是(0,x0),将(0,x0)代入f(x),解得x0所以函数yf1(x)的图象与x轴有交点,交点为(,0)。- 4 -用心 爱心 专心