收藏 分销(赏)

南京市、盐城市2015届高三年级第二次模拟考试-数学试题.doc

上传人:xrp****65 文档编号:5766167 上传时间:2024-11-19 格式:DOC 页数:19 大小:528KB 下载积分:10 金币
下载 相关 举报
南京市、盐城市2015届高三年级第二次模拟考试-数学试题.doc_第1页
第1页 / 共19页
南京市、盐城市2015届高三年级第二次模拟考试-数学试题.doc_第2页
第2页 / 共19页


点击查看更多>>
资源描述
南京市、盐城市2015届高三年级第二次模拟考试 数 学 一、 填空题 1、函数的最小正周期为 。 2、已知复数,其中是虚数单位,则复数在复平面上对应的点位 于第 象限。 3、右图是一个算法流程图,如果输入的值是,则输出的值是 。 4、某工厂为了了解一批产品的净重(单位:克)情况,从中随机抽测了100件产品的净重, 所得数据均在区间[96,106]中,其中频率分布直方图如图所示,则在抽测的100件产品中,净重在区[100,104]上的产品件数是 。 若红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 。 6、如图,在平面四边形ABCD中,AC,BD相交于点O,E为线段AO的中点,若(),则 7、已知平面α,β,直线,给出下列命题: ①若,,则, ②若,,则, ③若,则, ④若, ,则. 其中是真命题的是 。(填写所有真命题的序号)。 8、如图,在中,D是BC上的一点。已知,,则AB= 。 9、在平面直角坐标系xoy中,已知抛物线C:的焦点为F,定点,若射线FA与抛物线C相交于点M,与抛物线C的准线相交于点N,则FM:MN= 。 10、记等差数列的前n项和为,已知,且数列也为等差数列, 则= 。 11、已知知函数,,则不等式的解集是 。 12、在平面直角坐标系中,已知⊙C:,A为⊙C与x负半轴的交点,过A作⊙C的弦AB,记线段AB的中点为M.则直线AB的斜率为 。 13、已知均为锐角,且,则的最大值是 。 14、已知函数,当时,关于的方程的所有解的和为 。 二、解答题 15、在中,角A、B、C的对边分别为.已知. (1)若,求的面积;(2)设向量,,且,求 的值。 16、如图,在四棱锥P—ABCD中,,,,. (1)求证:平面; (2)若M为线段PA的中点,且过三点的平面与PB交于点N,求PN:PB的值。 (第16题图) P A B C D M 17.右图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上)。过O作,交AB 于M,交EF于N,交圆弧AB于P,已知(单位:m),记通风窗EFGH的面积为S(单位:) (1)按下列要求建立函数关系式: (i)设,将S表示成的函数; (ii)设,将S表示成的函数; (2)试问通风窗的高度MN为多少时?通风窗EFGH的面积S最大? 18、如图,在平面直角坐标系中,椭圆E:的离心率为,直线l:与椭圆E相交于A,B两点,,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N. (1)求的值;(2)求证:直线MN的斜率为定值。 x y A O B C D M N (第18题图) 19、已知函数,其中为常数. (1)若,求曲线在点处的切线方程. (2)若,求证:有且仅有两个零点; (3)若为整数,且当时,恒成立,求的最大值。 20.给定一个数列,在这个数列中,任取项,并且不改变它们在数列中的先后次序,得到的数列的一个阶子数列。 已知数列的通项公式为,等差数列,,是数列的一个3子阶数列。 (1) 求的值; (2) 等差数列是的一个阶子数列,且 ,求证: (3) 等比数列是的一个阶子数列, 求证: 南京市、盐城市2015届高三年级第二次模拟考试 数学附加题 21、选做题 A,选修4-1;几何证明选讲 如图,过点A的圆与BC切于点D,且与AB、AC分别交于点E、F.已知AD为∠BAC的平分线,求证:EF||BC B A D E C F (第21A题图) B.选修4-2:矩阵与变换 已知矩阵 ,A的逆矩阵 (1) 求a,b的值; (2)求A的特征值。 C.选修4-4:坐标系与参数方程 在平面直角坐标系xoy中,已知曲线C:,直线l:.设曲线C与直线l交于A,B两点,求线段AB的长度。 D.选修4-5:不行等式选讲 已知x,y,z都是正数且xyz=1,求证:(1+x)(1+y)(1+z)≥8 22、甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立. (1)分别求甲队以3:0,3:1,3:2获胜的概率; (2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望。 23、(本小题满分10分) 已知,定义 (1) 记 ,求的值; (2)记 ,求所有可能值的集合。 南京市、盐城市2015届高三年级第二次模拟考试 数学参考答案 一、填空题:本大题共14小题,每小题5分,共70分. 1.p 2.一 3.-2 4.55 5. 6. 7.③④ 8. 9. 10.50 11.(1,2) 12. 2 13. 14.10000 15.(本小题满分14分) 在△ABC中,角A、B、C的对边分别为a,b,c.已知cosC=. (1)若×=,求△ABC的面积; (2)设向量x=(2sin,),y=(cosB,cos),且x∥y,求sin(B-A)的值. 解:(1)由·=,得abcosC=. 又因为cosC=,所以ab==. ………………… 2分 又C为△ABC的内角,所以sinC=. ………………… 4分 所以△ABC的面积S=absinC=3. ………………… 6分 (2)因为x//y,所以2sincos=cosB,即sinB=cosB. ……………… 8分 因为cosB≠0,所以tanB=. 因为B为三角形的内角,所以B=. ………………… 10分 所以A+C=,所以A=-C. 所以sin(B-A)=sin(-A)=sin(C-) =sinC-cosC=×-× =. …………………… 14分 16.(本小题满分14分) 如图,在四棱锥P—ABCD中, AD=CD=AB, AB∥DC,AD⊥CD,PC⊥平面ABCD. (1)求证:BC⊥平面PAC; (第16题图) P A B C D M (2)若M为线段PA的中点,且过C,D,M三点的平面与PB交于点N,求PN:PB的值. 证明:(1)连结AC.不妨设AD=1. 因为AD=CD=AB,所以CD=1,AB=2. 因为ÐADC=90°,所以AC=,ÐCAB=45°. 在△ABC中,由余弦定理得BC=,所以AC2+BC2=AB2. 所以BC^AC. …………………… 3分 因为PC^平面ABCD,BCÌ平面ABCD,所以BC^PC. …………………… 5分 因为PCÌ平面PAC,ACÌ平面PAC,PC∩AC=C, 所以BC^平面PAC. …………………… 7分 (第16题图) P A B C D M N (2)如图,因为AB∥DC,CDÌ平面CDMN,ABË平面CDMN, 所以AB∥平面CDMN. …………………… 9分 因为ABÌ平面PAB, 平面PAB∩平面CDMN=MN, 所以AB∥MN. …………………… 12分 在△PAB中,因为M为线段PA的中点, 所以N为线段PB的中点, 即PN:PB的值为. …………………… 14分 17.(本小题满分14分) 右图为某仓库一侧墙面的示意图,其下部是一个矩形ABCD,上部是圆弧AB,该圆弧所在圆的圆心为O.为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上, G,H在弦AB上).过O作OP^AB,交AB于M,交EF于N,交圆弧AB于P.已知OP=10,MP=6.5(单位:m),记通风窗EFGH的面积为S(单位:m2). E B G A N D M C F O H P (第17题图) (1)按下列要求建立函数关系式: (i)设∠POF=θ (rad),将S表示成θ的函数; (ii)设MN=x (m),将S表示成x的函数; (2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大? 解:(1)由题意知,OF=OP=10,MP=6.5,故OM=3.5. (i)在Rt△ONF中,NF=OFsinθ=10sinθ,ON=OFcosθ=10cosθ. 在矩形EFGH中,EF=2MF=20sinθ,FG=ON-OM=10cosθ-3.5, 故S=EF×FG=20sinθ(10cosθ-3.5)=10sinθ(20cosθ-7). 即所求函数关系是S=10sinθ(20cosθ-7),0<θ<θ0,其中cosθ0=. ………… 4分 (ii)因为MN=x,OM=3.5,所以ON=x+3.5. 在Rt△ONF中,NF===. 在矩形EFGH中,EF=2NF=,FG=MN=x, 故S=EF×FG=x. 即所求函数关系是S=x,0<x<6.5. ………… 8分 (2)方法一:选择(i)中的函数模型: 令f(θ)=sinθ(20cosθ-7), 则f ′(θ)=cosθ(20cosθ-7)+sinθ(-20sinθ)=40cos2θ-7cosθ-20.………… 10分 由f ′(θ)=40cos2θ-7cosθ-20=0,解得cosθ=,或cosθ=-. 因为0<θ<θ0,所以cosθ>cosθ0,所以cosθ=. 设cosα=,且α为锐角, 则当θ∈(0,α)时,f ′(θ)>0 ,f(θ)是增函数;当θ∈(α,θ0)时,f ′(θ)<0 ,f(θ)是减函数, 所以当θ=α,即cosθ=时,f(θ)取到最大值,此时S有最大值. 即MN=10cosθ-3.5=4.5m时,通风窗的面积最大. ………… 14分 方法二:选择(ii)中的函数模型: 因为S= ,令f(x)=x2(351-28x-4x2), 则f ′(x)=-2x(2x-9)(4x+39). ……… 10分 因为当0<x<时 ,f ′(x)>0,f(x)单调递增,当<x<时,f ′(x)<0,f(x)单调递减, 所以当x=时,f(x)取到最大值,此时S有最大值. 即MN=x=4.5m时,通风窗的面积最大. ………… 14分 18.(本小题满分16分) x y A O B C D M N (第18题图) 如图,在平面直角坐标系xOy中,椭圆E:+=1(a>b>0) 的离心率为,直线l:y=x与椭圆E相交于A,B两点,AB=2.C,D是椭圆E上异于A,B的任意两点,且直线AC,BD相交于点M,直线AD,BC相交于点N. (1)求a,b的值; (2)求证:直线MN的斜率为定值. 解:(1)因为e==,所以c2=a2,即a2-b2=a2,所以a2=2b2.…… 2分 故椭圆方程为+=1. 由题意,不妨设点A在第一象限,点B在第三象限. 由解得A(b,b). 又AB=2,所以OA=,即b2+b2=5,解得b2=3. 故a=,b=. ……………… 5分 (2)方法一:由(1)知,椭圆E的方程为 +=1,从而A(2,1),B(-2,-1). ①当CA,CB,DA,DB斜率都存在时,设直线CA,DA的斜率分别为k1,k2,C(x0,y0),显然k1≠k2. 从而k1 ·kCB=·====-. 所以kCB=-. …………………… 8分 同理kDB=-. 于是直线AD的方程为y-1=k2(x-2),直线BC的方程为y+1=-(x+2). 由解得 从而点N的坐标为(,). 用k2代k1,k1代k2得点M的坐标为(,). ………… 11分 所以kMN= ==-1. 即直线MN的斜率为定值-1. ……… 14分 ②当CA,CB,DA,DB中,有直线的斜率不存在时, 根据题设要求,至多有一条直线斜率不存在, 故不妨设直线CA的斜率不存在,从而C(2,-1). 仍然设DA的斜率为k2,由①知kDB=-. 此时CA:x=2,DB:y+1=-(x+2),它们交点M(2,-1-). BC:y=-1,AD:y-1=k2(x-2),它们交点N(2-,-1), 从而kMN=-1也成立. 由①②可知,直线MN的斜率为定值-1. ………… 16分 方法二:由(1)知,椭圆E的方程为 +=1,从而A(2,1),B(-2,-1). ①当CA,CB,DA,DB斜率都存在时,设直线CA,DA的斜率分别为k1,k2. 显然k1≠k2. 直线AC的方程y-1=k1(x-2),即y=k1x+(1-2k1). 由得(1+2k12)x2+4k1(1-2k1)x+2(4k12-4k1-2)=0. 设点C的坐标为(x1,y1),则2·x1=,从而x1=. 所以C(,). 又B(-2,-1), 所以kBC==-. ……………… 8分 所以直线BC的方程为y+1=-(x+2). 又直线AD的方程为y-1=k2(x-2). 由解得 从而点N的坐标为(,). 用k2代k1,k1代k2得点M的坐标为(,). ……… 11分 所以kMN= ==-1. 即直线MN的斜率为定值-1. ……………… 14分 ②当CA,CB,DA,DB中,有直线的斜率不存在时, 根据题设要求,至多有一条直线斜率不存在, 故不妨设直线CA的斜率不存在,从而C(2,-1). 仍然设DA的斜率为k2,则由①知kDB=-. 此时CA:x=2,DB:y+1=-(x+2),它们交点M(2,-1-). BC:y=-1,AD:y-1=k2(x-2),它们交点N(2-,-1), 从而kMN=-1也成立. 由①②可知,直线MN的斜率为定值-1. ……………… 16分 19.(本小题满分16分) 已知函数f(x)=1+lnx-,其中k为常数. (1)若k=0,求曲线y=f(x)在点 (1,f(1))处的切线方程; (2)若k=5,求证:f(x)有且仅有两个零点; (3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值. (参考数据ln8=2.08,ln9=2.20,ln10=2.30) 解:(1)当k=0时,f(x)=1+lnx. 因为f ¢(x)=,从而f ¢(1)=1. 又f (1)=1, 所以曲线y=f(x)在点 (1,f(1))处的切线方程y-1=x-1, 即x-y=0. ……… 3分 (2)当k=5时,f(x)=lnx+-4. 因为f ¢(x)=,从而 当x∈(0,10),f ′(x)<0,f(x)单调递减;当x∈(10,+∞)时,f ′(x)>0,f(x)单调递增. 所以当x=10时,f(x)有极小值. ……………… 5分 因f(10)=ln10-3<0,f(1)=6>0,所以f(x)在(1,10)之间有一个零点. 因为f(e4)=4+-4>0,所以f(x)在(10,e4)之间有一个零点. 从而f(x)有两个不同的零点. …………… 8分 (3)方法一:由题意知,1+lnx->0对x∈(2,+∞)恒成立, 即k<对x∈(2,+∞)恒成立. 令h(x)=,则h¢(x)=. 设v(x)=x-2lnx-4,则v¢(x)=. 当x∈(2,+∞)时,v¢(x)>0,所以v(x)在(2,+∞)为增函数. 因为v(8)=8-2ln8-4=4-2ln8<0,v(9)=5-2ln9>0, 所以存在x0∈(8,9),v(x0)=0,即x0-2lnx0-4=0. 当x∈(2,x0)时,h¢(x)<0,h(x)单调递减,当x∈(x0,+∞)时,h¢(x)>0,h(x)单调递增. 所以当x=x0时,h(x)的最小值h(x0)=. 因为lnx0=,所以h(x0)=∈(4,4.5). 故所求的整数k的最大值为4. …………… 16分 方法二:由题意知,1+lnx->0对x∈(2,+∞)恒成立. f(x)=1+lnx-,f ¢(x)=. ①当2k≤2,即k≤1时,f¢(x)>0对x∈(2,+∞)恒成立, 所以f(x)在(2,+∞)上单调递增. 而f(2)=1+ln2>0成立,所以满足要求. ②当2k>2,即k>1时, 当x∈(2,2k)时,f ′(x)<0, f(x)单调递减,当x∈(2k,+∞),f ′(x)>0,f(x)单调递增. 所以当x=2k时,f(x)有最小值f(2k)=2+ln2k-k. 从而f(x)>0在x∈(2,+∞)恒成立,等价于2+ln2k-k>0. 令g(k)=2+ln2k-k,则g¢(k)=<0,从而g(k) 在(1,+∞)为减函数. 因为g(4)=ln8-2>0,g(5)=ln10-3<0 , 所以使2+ln2k-k<0成立的最大正整数k=4. 综合①②,知所求的整数k的最大值为4. ……… 16分 20.(本小题满分16分) 给定一个数列{an},在这个数列里,任取m(m≥3,m∈N*)项,并且不改变它们在数列{an}中的先后次序,得到的数列称为数列{an}的一个m阶子数列. 已知数列{an}的通项公式为an= (n∈N*,a为常数),等差数列a2,a3,a6是数列{an}的一个3阶子数列. (1)求a的值; (2)等差数列b1,b2,…,bm是{an}的一个m (m≥3,m∈N*) 阶子数列,且b1= (k为常数, k∈N*,k≥2),求证:m≤k+1; (3)等比数列c1,c2,…,cm是{an}的一个m (m≥3,m∈N*) 阶子数列, 求证:c1+c2+…+cm≤2-. 解:(1)因为a2,a3,a6成等差数列,所以a2-a3=a3-a6. 又因为a2=,a3=, a6=, 代入得-=-,解得a=0. …………… 3分 (2)设等差数列b1,b2,…,bm的公差为d. 因为b1=,所以b2≤, 从而d=b2-b1≤ -=-. ……………… 6分 所以bm=b1+(m-1)d≤-. 又因为bm>0,所以->0. 即m-1<k+1. 所以m<k+2. 又因为m,k∈N*,所以m≤k+1. …………… 9分 (3)设c1= (t∈N*),等比数列c1,c2,…,cm的公比为q. 因为c2≤,所以q=≤. 从而cn=c1qn-1≤(1≤n≤m,n∈N*). 所以c1+c2+…+cm≤+++…+ =[1-] =-. ………… 13分 设函数f(x)=x-,(m≥3,m∈N*). 当x∈(0,+∞)时,函数f(x)=x-为单调增函数. 因为当t∈N*,所以1<≤2. 所以f()≤2-. 即 c1+c2+…+cm≤2-. ……… 16分 南京市、盐城市2015届高三年级第二次模拟考试 数学附加题参考答案 A.选修4—1:几何证明选讲 B A D E C F (第21A题图) 如图,过点A的圆与BC切于点D,且与AB、AC分别交于点E、F.已知AD为∠BAC的平分线,求证:EF∥BC. 证明:如图,连接ED. B A D E C F (第21A题图) 因为圆与BC切于D,所以∠BDE=∠BAD.…………………… 4分 因为AD平分∠BAC, 所以∠BAD=∠DAC. 又∠DAC=∠DEF,所以∠BDE=∠DEF. 所以EF∥BC. …………………… 10分 B.选修4-2:矩阵与变换 已知矩阵A=, A的逆矩阵A-1= . (1)求a,b的值; (2)求A的特征值. 解:(1)因为A A-1= ==. 所以 解得a=1,b=-. …………………… 5分 (2)由(1)得A=, 则A的特征多项式f(λ)==(λ-3)( λ-1). 令f(λ)=0,解得A的特征值λ1=1,λ2=3. ………………… 10分 C.选修4-4:坐标系与参数方程 在平面直角坐标系xOy中,已知曲线C:(s为参数),直线l:(t为参数).设C与l交于A,B两点,求线段AB的长度. 解:由消去s得曲线C的普通方程为y=x2; 由消去t得直线l的普通方程为y=3x-2.…………… 5分 联立直线方程与曲线C的方程,即 解得交点的坐标分别为(1,1),(2,4). 所以线段AB的长度为=. …………… 10分 D.选修4-5:不等式选讲 已知x,y,z都是正数,且xyz=1,求证:(1+x)( 1+y)( 1+z)≥8. 证明:因为x为正数,所以1+x≥2. 同理 1+y≥2, 1+z≥2. 所以(1+x)( 1+y)( 1+z)≥2·2·2=8. 因为xyz=1, 所以(1+x)( 1+y)( 1+z)≥8. …… 10分 22.(本小题满分10分) 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2获胜的概率; (2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望. 解:(1)记甲队以3∶0,3∶1,3∶2获胜分别为事件A,B,C. 由题意得P(A)==, P(B)=C··=, P(C)= C··=. …………… 5分 (2)X的可能取值为0,1,2,3. P(X=3)=P(A)+P(B)=; P(X=2)=P(C)=, P(X=1)=C··=, P(X=0)=1-P(1≤X≤3)=. 所以X的分布列为: X 0 1 2 3 P 从而E(X)=0×+1×+2×+3×=. 答:甲队以3∶0,3∶1,3∶2获胜的概率分别为,,.甲队得分X的数学期望为. …………………… 10分 23.(本小题满分10分) 已知m,n∈N*,定义fn(m)=. (1)记am=f6(m),求a1+a2+…+a12的值; (2)记bm=(-1)mmfn(m),求b1+b2+…+b2n所有可能值的集合. 解:(1)由题意知,fn(m)= 所以am= ………………… 2分 所以a1+a2+…+a12=C+C+…+C=63. ………………… 4分 (2)当n=1时, bm=(-1)mmf1(m)=则b1+b2=-1.………… 6分 当n≥2时,bm= 又mC=m·=n·=nC, 所以b1+b2+…+b2n=n[-C+C-C+C+…+(-1)nC]=0. 所以b1+b2+…+b2n的取值构成的集合为{-1,0}. ………… 10分
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服