资源描述
人教版五年级上册数学应用题附答案
1.大米、面粉和食用油的单价如下表。(“■”代表0~9其中的1个数字)
物品
大米
面粉
食用油
单价
6.■8元/kg
8.2■元/kg
47.50元/瓶
(1)张奶奶买10kg大米和5kg面粉。带100元够吗?为什么?
(2)李叔叔买了2瓶食用油,付给售货员100元,应找回多少钱?
2.藏羚羊的奔跑速度大约可达到每分钟1.33千米,非洲猎豹的速度大约是藏羚羊的1.3倍,非洲猎豹的速度每分钟大约是多少千米?(得数保留两位小数)
3.有一条长35米,宽24米的花坛,如果在这个花坛的四周修2.5米宽的小路(如图,单位:米)小路的面积是多少平方米?
4.五年级一班48个同学集体合影。定价是24.5元,给4张相片。另外加印是每张2.3元。全班每人一张,再送给班主任和5个科任教师每人一张,一共要付多少元?
5.某出租车公司的出租车收费标准如下表。
里程
收费
3千米以内(含3千米)
6.00元
3千米以上,每1千米
2.80元
芳芳乘出租车去距离她家7千米的外婆家,应付多少车费?
6.人民广场有一块边长25米的正方形草坪,现在围着这块草坪要修一条宽1.2米小路(如图)。请你算一算,这条小路的面积约是多少平方米?(得数保留整数)
7.某市自来水公司为鼓励节约用水,采取按月分段计费的方式收取水费。12吨以内的每吨2.5元;超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为18吨,应缴水费多少元?
8.王阿姨去超市购物。她买了2箱牛奶,每箱38.5元。还买了1.5kg肉,每千克32.8元。王阿姨一共花了多少钱?
9.某市出租车收费标准如下,李老师乘出租车行驶10.4千米,他应付多少元?
路程
标准
2千米以内
8元
超过2千米
每千米1.5元(不足1千米的按1千米计算)
10.王叔叔把每月车辆保养、使用的相关信息记录如下。
(1)王叔叔想计算出每月加油共需多少钱,他需要用到记录单上的哪些信息?请你在这些信息前面的字母上打“√”。
(2)根据你选出的信息,计算出王叔叔每月加油所需要的钱数。
11.某超市甲种牙刷的售价是5支48.5元;乙种牙刷是“买5赠2”,售价是64.4元,哪种牙刷便宜?每支便宜多少元?
12.妈妈到水果店买水果,买香蕉用了15.8元,比2千克苹果多花了2.4元,每千克苹果多少钱?
13.两个工程队合修一条长4.5千米的水渠,各从一端相向施工,20天完工。甲队平均每天修100米,乙队平均每天修多少米?
14.张大叔养白兔和黑兔,白兔的只数是黑兔的3倍。______________,白兔和黑兔各有多少只?
(选择一个你喜欢的条件,将序号填在横线上,再解答)
A.白兔和黑兔一共180只
B.白兔比黑免多180只
15.两工程队同时开凿一条1377米长的隧道。各从一端相向施工,甲队的开凿速度是乙队的1.25倍,45天后完成施工。甲、乙两队每天分别开凿多少米?
16.学校图书馆买来15包故事书和12包科技书,共840本,每包科技书20本,每包故事书多少本?(列方程解答)
17.两列火车从相距550km的两地同时相向开出。甲车每小时行120km,乙车每小时行100km,经过几小时两车相遇?(先写出数量关系式,再列方程解答)
18.请问:今年大头儿子几岁?(用方程解答)
19.工程队修一条路,计划20天修完,实际每天比计划多修40米,结果提前4天修完。工程队原计划每天修多少米?
20.5月31日是“世界无烟日”,黄老师和农老师组织五、六年级的学生参加戒烟宣传活动,其中五年级参加的人数是六年级的1.2倍,且五年级比六年级多36人,五、六年级各有多少人参加?(列方程解答)
21.一节1号电池多少元?
22.王阿姨想给长方形客厅重新铺正方形地砖,客厅尺寸如下。现在要选用如下图中的地砖铺面,且不切割,正好用整块数。选用哪种规格的地砖比较合适?一共需要多少块?
23.做一套服装,上衣用布1.9米,裤子用布1.5米。如果一匹布长150米,用这匹布最多可以做多少套这种服装?
24.某工程队修一条水渠,原计划每天修0.45千米,32天修完,后因增加了机械设备,每天修水渠0.6千米。实际用多少天可以修完这条水渠?
25.为弘扬尊老、爱老、敬老、助老的传统美德,志愿者张叔叔骑自行车,李叔叔骑摩托车从相距112千米的两地同时出发,相向而行。李叔叔骑摩托车每小时行54千米,若他们经过1.6小时在敬老院相遇,张叔叔骑自行车每小时行多少千米?
26.红卫村要修一条长2.64千米的村级公路,甲乙两个修路队同时从公路两端往中间施工,8天刚好修完,甲队每天修0.15千米。乙队每天修多少千米?
27.聪聪的爷爷买了一箱苹果和一把香蕉,共花了189.3元。这把香蕉重多少千克?
28.中国联通新年促销活动,每月话费19元通话400分钟,超出400分钟的时间按0.1元/分计算。妈妈办理了这个活动,1月份的话费是25元。妈妈1月份一共打了多少分钟电话?
29.甲乙两地之间的公路长560千米,一辆客车和一辆货车同时从甲乙两地开出,相向而行,客车每小时行90千米,货车每小时行70千米,经过几小时两车相遇?
30.聪聪和明明家距离996米,他们同时从家出发到学校,12分钟后他们在学校大门相遇,聪聪每分钟走40米,明明每分钟走多少米?(用方程解)
31.五(1)班图书角故事书的本数是科技书的3倍,故事书比科技书多48本,故事书和科技书分别有多少本?(列方程解答)
32.如图,已知平行四边形的一条底和两条高的长,如果用铁丝围成这样一个平行四边形至少要用多长的铁丝?
33.一块菜地的形状如图所示(单位:米)。如果这块菜地每平方米能收6棵青菜。
(1)这块菜地的面积是多少平方米?
(2)这块地一共可以收多少棵青菜?
34.陈伯伯靠墙围了一个梯形菜地(靠墙的一边不用篱笆),如下图,已知篱笆长57米,求这块菜地的面积有多少平方米?
35.如图,一个平行四边形的一边长15厘米,这条边上的高为6厘米,一条线段将此平行四边形分成了两部分,它们的面积相差18平方厘米,求其中梯形的上底是多少厘米?
36.下面是一块荒地平面图.
(1)这块荒地如果种花椒,大约可以种多少株?如果种桑树呢?
(2)如果每株桑树上的桑叶养的蚕可卖3.5元,每株花椒树上的花椒可卖15元,你觉得种什么树比较划算?算算看,将过程写在下面.
37.两个正方形相拼,求阴影部分的面积.
38.四边形ABCG、DEFG为长方形,AB=7厘米,AG=4厘米,DE=2厘米,EF=10厘米,那么三角形BCM比三角形DEM的面积大多少平方厘米?
39.—间教室长8.8米,宽5.9米,现要铺上边长为8分米的正方形地砖,100块够吗?
40.如下图,同一直线上的直角梯形和长方形相距10cm。直角梯形上底2cm,下底4cm,高6cm。长方形长26cm,宽6cm。现在直角梯形按每秒2cm匀速向右平移。
(1)画出直角梯形平移6秒钟后的位置,并算一算这时它与长方形重叠部分的面积是多少平方厘米?
(2)想一想,算一算,在直角梯形平移过程中,整个直角梯形与长方形完全重叠的时间维持了几秒?
41.小明和小芳是集邮爱好者,小明的邮票数量是小芳的5倍,如果小明给小芳38张,他们的邮票数量正好相等,小明和小芳原来各有多少张邮票?(用方程解)
42.湿地与森林、海洋并称为地球的三大生态系统。目前,北京400m2以上的湿地总面积约为5.88万公顷,分为天然湿地和人工湿地,人工湿地的面积是天然湿地的1.1倍。天然湿地和人工湿地的面积分别是多少万公顷?(用方程解答)
43.围棋社一共有学员48人,男生人数是女生人数的3倍。围棋社的男生女生各有多少人?(列方程解答)
44.一辆快车和一辆慢车,同时从A、B两地相对开出,经过4小时后,两车在距中点20千米处相遇,已知两车速度和为128千米。快车和慢车的速度分别是多少千米?
45.公园里有杨树和柳树共40棵,杨树的棵树比柳树的2倍还多4棵,杨树和柳树各有多少棵?(列方程解决)
46.笼子里有白兔、灰兔若干支。白兔的只数是灰兔的3倍,灰兔比白兔少8只,白兔、灰兔各几只?(列出两种不同的方程,其中一种可以只列不解)
法一:
法二:
47.王叔叔家一共养了1850只白兔和黑兔。
王叔叔家养白兔和黑兔各多少只?
48.丽丽家的果园里有桃树和苹果树共720棵,苹果树的棵数是桃树的2倍,丽丽家有桃树、苹果树各多少棵?(用方程解)
49.鸡兔同笼,鸡比兔多1只,共有腿62条。鸡和兔各有多少只?
50.一条水渠横截面是梯形(如图)。已知横截面的面积是2.52m2,高是1.2m,渠口宽是渠底的2倍。渠口宽多少米?(用方程解)
51.“植树问题”有两端植、一端植、两端都不植三种情况。画图并配上文字,说明三种情况间隔数与棵数之间的关系。
52.受国际油价下降影响,国内汽油零售价下调。92号汽油原价6.80元/升,现在每升下调了0.34元,王叔叔加了48升92号汽油,少花了多少元?
53.国庆节期间,伟伟一家开车到游乐场游玩,那里的停车场收费标准如下,伟伟的爸爸付了13.5元的停车费,你知道伟伟的爸爸的车最多停了多长时间吗?
54.邮局邮寄外埠信函的收费标准是:100 g以内的,每20 g(不足20 g,按20 g计算)收费1.20元;100 g以上的,每增加100 g(不足100 g,按100 g计算)加收2.00元.芳芳给外埠的阿姨寄一封298 g的信函,应付多少钱的邮费?
55.某超市举办“买四送一”促销活动,每盒牛奶2.8元,小华要买20盒,一共需要多少钱?
56.迎新年各超市搞促销活动,一种饮料原来每瓶售价3元.现在甲、乙两家超市优惠情况如下:
甲:每瓶售价降低0.4元
乙:买五送一
小华要买12瓶这样的饮料,到哪家超市去买比较合适?(写出计算过程.)
57.(1)随着电动车的普及,充电问题日益突出,某大学为解决校园内充电难、乱停乱放问题,决定在校园安装10个充电区,每个充电区安装的长度都是45米,每隔0.9米安放一个充电桩(两端都安)。每个充电区要安装多少个充电桩?
(2)一般电动车每小时充电用电量是0.14度电,9小时左右充满。如果每度电收费1.6元,充5小时需要多少钱?
58.下图表示的是两种水果的单价(每种水果的单价都被▉挡住了一个数字)。
王阿姨用100元钱买了3千克荔枝后,剩下的钱够买5千克苹果吗?
59.五一班45人照合影,每人1张照片,一共需要多少钱?
60.一列火车共有16节车厢,每节车厢长24.4米,相邻两个车厢间隔2.4米,这列火车全长是多少米?
61.五(1)班原有班费24.2元,同学们卖废品又得到16.4元。用这些钱正好可以买14根跳绳,平均每根跳绳多少元?
62.要在一条长3600米的公路两侧植梧桐树(每侧两端都要植),计划相邻两棵树之间相距20米,共需梧桐树多少棵?
63.在两个教学楼之间有一条140米的小路。在小路一侧每隔10米种一棵树,(两端都不种)一共要种多少棵树?
64.一根木头长12米,要把它锯成长度相等的6段,每锯一次需要7分钟,锯完一共需要多少分钟?
65.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
66.绿化公司准备给一条长为2000米的公路两旁栽树,每隔4米栽一棵.
(1)如果两端都栽一棵,需多少棵树?
(2)如果只有一端栽树,需多少棵树?
(3)如果两端都不栽树,需要多少棵树?
67.元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?
68.王大爷在正方形的鱼池边上植树,每边等距离植树10棵(四个角都栽树),每两棵树之间距离是8米,鱼池的周长是多少米?
69.妈妈到超市买大米,发现原来单价是每千克48元的大米正在搞促销,现在单价为每千克45元。妈妈原来买30千克大米的钱现在可以多买多少千克?
70.有一条长1800米的公路,在公路的一侧从头到尾每隔6米栽一棵树,一共需要准备多少棵树苗?
【参考答案】
1.(1)不够;见详解
(2)5元
【解析】
(1)从表中可知,大米的单价超过6元,看作6元;面粉的单价超过8元,看作8元;根据单价×数量=总价,分别计算出买10kg大米和5kg面粉的价钱,再相加,就是总价,与带的100元相比较,如果大于或等于100元,就不够,反之就够。
(2)根据单价×数量=总价,求出2瓶食用油的价钱,再用付给售货员的100元减去总去2瓶食用油的价钱,就是应找回的钱数。
(1)6.■8≈6
8.2■≈8
6×10+8×5
=60+40
=100(元)
6.■8×10+8.2■×5>100,不够。
答:不够,把大米的单价看作6元、面粉的单价看作8元,都比实际的单价少,总价正好是100元,那么实际的总价大于100元,所以不够。
(2)47.5×2=95(元)
100-95=5(元)
答:应找回5元。
【点睛】
本题考查小数乘法的计算以及用估算的方法解决实际问题,掌握单价、数量、总价之间的关系是解题的关键。
2.73千米
【解析】
根据求一个数的几倍是多少,用乘法计算即用藏羚羊的奔跑速度乘1.3就是,非洲猎豹的速度,结果根据四舍五入法保留两位小数即可。
1.33×1.3≈1.73(千米)
答:非洲猎豹的速度每分钟大约是1.73千米。
【点睛】
本题考查求一个数的几倍是多少,明确用乘法是解题的关键。
3.320平方米
【解析】
由题意可知,外面的大长方形的长为(35+2.5×2)米,宽为(24+2.5×2)米,小路的面积=大长方形的面积-小长方形的面积,根据长方形的面积公式分别计算大长方形和小长方形的面积,再相减即可得解。
(35+2.5×2)×(24+2.5×2)
=(35+5)×(24+5)
=40×29
=1160(平方米)
35×24=840(平方米)
1160-840=320(平方米)
答:小路的面积是320平方米。
【点睛】
本题考查长方形的面积,明确大长方形的长和宽是解题的关键。
4.5元
【解析】
照完后送4张相片,全班每人要一张,再送给班主任和5个科任教师每人一张,也就是说五年级一班还需要再加印张相片就可以了。求出这50张相片的价格,再加上24.5元即可。
(元)
答:一共要付139.5元。
【点睛】
此题主要考查了乘法、加法的意义的应用,要熟练掌握,解答此题的关键是要明确单价、总价、数量的关系。
5.2元
【解析】
根据题意,超过3千米的距离为(7-3)千米,乘单价,求出超过3千米部分要付的钱数,再加上3千米收的6元,就是一共应付的车费。
2.8×(7-3)+6
=2.8×4+6
=11.2+6
=17.2(元)
答:应付17.2元车费。
【点睛】
本题考查分段计费问题,弄清每段的临界点和每段的收费标准。
6.126平方米
【解析】
用草坪的边长加上路宽度的2倍,求出草坪和路组成的大正方形的边长,从而求出大正方形的面积。将大正方形的面积减去草坪的面积,即可求出小路的面积。
(25+1.2×2)×(25+1.2×2)-25×25
=(25+2.4)×(25+2.4)-625
=27.4×27.4-625
=750.76-625
=125.76
≈126(平方米)
答:这条小路的面积约是126平方米。
【点睛】
本题考查了正方形的面积,正方形面积=边长×边长。
7.(1)27.5元
(2)52.8元
【解析】
(1)在12吨以内的用水量,用吨数乘每吨水的单价即可;
(2)用12吨用水量乘12吨以内每吨水的单价,计算出12吨以内用水的价钱,超出12吨的用水量,用多出的吨数乘超出12吨后每吨水的单价,得出超出部分的价钱,两部分的费用加起来即可。
(1)11×2.5=27.5(元)
答:应缴水费27.5元。
(2)12×2.5+(18-12)×3.8
=30+6×3.8
=30+22.8
=52.8(元)
答:应缴水费52.8元。
【点睛】
此题的解题关键是采取分段计费的办法,计算出每一段的费用,再加起来即可。
8.2元
【解析】
用牛奶的箱数乘每箱的单价,可得出买牛奶花的价钱。用每千克肉的单价,乘肉的重量,可得出买肉花的价钱。把买牛奶和买肉的价钱加起来,即可得解。
(元)
答:王阿姨一共花了126.2元。
【点睛】
此题的解题关键是掌握单价、数量和总价三者之间的关系,列出算式,求出结果。
9.5元
【解析】
由题意,可把10.4千米看作11千米,先减去2千米,再乘1.5元,计算出属于第二个段位应付车费,列综合算式为(11-2)×1.5;最后再加上8元,就是一共应付的车费。
10.4-2=8.4(千米)
8.4≈9(千米)
9×1.5+8
=13.5+8
=21.5(元)
或10.4≈11(千米)
(11-2)×1.5+8
=9×1.5+8
=13.5+8
=21.5(元)
答:他应付21.5元。
【点睛】
一是要读懂收费标准,理解每一个段位里的计费方法;其次,要懂得把不足整数千米的距离记作整千米数,使其符合出租车计费方法。
10.(1)见详解;
(2)540.8元
【解析】
(1)要计算出加油需多少钱,需要知道每月行驶的路程、每100千米的耗油量及汽油的单价,据此即可圈出所需的信息;
(2)先用每千米的耗油量乘上1000求出总的耗油量,再乘上每升汽油的价格,即可得出王叔叔每月加油共需多少钱。
(1)王叔叔要先计算出每月加油共需要多少钱,需要知道每月行驶的路程、每千米的耗油量及汽油的单价,将所需信息圈出如下:
(2)0.08×1000×6.76
=80×6.76
=540.8(元);
答:王叔叔每月加油共需540.8元钱。
【点睛】
此题考查的是价格问题,解决本题要有一定的生活常识以及明确数量、单价、总价之间的数量关系。
11.乙种便宜;便宜0.5元
【解析】
分别求出每种牙刷的单价,比较、求差即可;甲种牙刷:直接用总价÷数量=单价;乙种牙刷:先求出实际获得牙刷数量,总价÷实际数量=实际单价,据此分析。
48.5÷5=9.7(元)
64.4÷(5+2)
=64.4÷7
=9.2(元)
9.7>9.2
9.7-9.2=0.5(元)
答:乙种牙刷便宜,便宜0.5元。
【点睛】
关键是理解单价、数量、总价之间的关系,掌握小数除法的计算方法。
12.7元
【解析】
根据题意可得等量关系式:2千克苹果的总价元买香蕉用的钱数,设每千克苹果元,然后列方程依据等式的性质解答即可。
解:设每千克苹果元,
答:每千克苹果6.7元钱。
【点睛】
分析题意,找准等量关系式是解答此题的关键。
13.125米
【解析】
把乙队平均每天修的长度设为未知数,等量关系式:(甲队平均每天修的长度+乙队平均每天修的长度)×两队合作需要的天数=这条水渠的总长度。
4.5千米=4500米
解:设乙队平均每天修x米。
(100+x)×20=4500
100+x=4500÷20
100+x=225
x=225-100
x=125
答:乙队平均每天修125米。
【点睛】
分析题意找出等量关系式是解答题目的关键。
14.A
解析:A;135只;45只
【解析】
横线上填白兔和黑兔一共180只,设黑兔有x只,那么白兔就有3x只,依据白兔只数+黑兔只数=180只列方程即可解答。
解:设黑兔有x只,那么白兔就有3x只,
x+3x=180
4x=180
x=180÷4
x=45
45×3=135(只)
答:白兔有135只,黑兔有45只。
【点睛】
此题的解题关键是弄清题意,把黑兔的只数设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
15.甲队每天开凿17米,乙队每天开凿13.6米
【解析】
根据题意,这道题的等量关系是:(甲队开凿的速度乙队开凿的速度)工作时间隧道的总长度,根据这个等量关系,列方程解答。
解:设乙队每天开凿x米,则甲队每天开凿1.25x米。
(x+1.25x)×45=1377
2.25x×45=1377
2.25x×45÷45=1377÷45
2.25x=30.6
2.25x÷2.25=30.6÷2.25
x=13.6
(米)
答:甲队每天开凿17米,乙队每天开凿13.6米。
【点睛】
本题用方程解答比较简单,解题关键是找出题目中的等量关系:(甲队开凿的速度乙队开凿的速度)工作时间隧道的总长度,列方程解答。
16.40本
【解析】
根据题意,等量关系:每包科技书的本数×科技书的包数+每包故事书的本数×故事书的包数=故事书和科技书一共的本数,据此列出方程,并求解。
解:设每包故事书本。
15+12×20=840
15+240=840
15+240-240=840-240
15=600
15÷15=600÷15
=40
答:每包故事书40本。
【点睛】
从题目中找到等量关系,按等量关系列出方程是解题的关键。
17.相遇时间×速度和=路程;2.5小时
【解析】
相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的数量关系:相遇时间×速度和=路程,假设经过x小时两车相遇,根据数量关系列方程,求出相遇时间即可。
数量关系式:相遇时间×速度和=路程。
解:设经过x小时两车相遇。
x×(120+100)=550
220x=550
x=550÷220
x=2.5
答:经过2.5小时两车相遇。
【点睛】
本题考查行程问题的解题方法,解题关键是掌握相遇问题的数量关系,利用相遇时间×速度和=路程,列方程计算求出相遇时间。
18.9岁
【解析】
设今年大头儿子x岁,则爸爸今年4x岁,根据爸爸年龄-大头儿子年龄=27岁,列出方程解答即可。
解:设今年大头儿子x岁。
4x-x=27
3x÷3=27÷3
x=9
答:今年大头儿子9岁。
【点睛】
用方程解决问题的关键是找到等量关系。
19.160米
【解析】
根据题意,这条路的全长一定,等量关系:原计划每天修的米数×计划修的天数=实际每天修的米数×实际修的天数,据此列出方程,并求解。
解:设工程队原计划每天修米。
20=(+40)×(20-4)
20=16(+40)
20=16+640
20-16=16+640-16
4=640
4÷4=640÷4
=160
答:工程队原计划每天修160米。
【点睛】
从题目中找到等量关系,按等量关系列出方程是解题的关键。
20.216人;180人
【解析】
五年级参加的人数是六年级的1.2倍,我们可以设六年级的人数为x人,则五年级参加的人数为1.2x人,再根据五年级比六年级多36人,列出方程求解,即可知道五六年级的人数。
解:设六年级参加的人数为x人,则五年级参加的人数为1.2x人。
1.2x-x=36
0.2x=36
0.2x÷0.2=36÷0.2
x=180
180×1.2=216(人)
答:五年级参加的人数为216人,六年级参加的人数为180人。
【点睛】
本题考查列方程解决差倍问题,解答本题的关键是根据倍数关系设1倍量为x。
21.9元
【解析】
由题意可知,根据总价÷数量=单价,据此解答即可。
5.4÷6=0.9(元)
答:一节1号电池0.9元。
【点睛】
本题考查单价、数量和总价的关系,明确它们的关系是解题的关键。
22.所以得选用边长是5分米的正方形地砖;96块
【解析】
由题意可知,根据长方形面积=长×宽,正方形的面积=边长×边长,如果长方形的面积能够整除该方砖的面积则选用该规格的地砖比较合适。据此解答即可。
4米=40分米,6米=60分米
40×60÷(8×8)
=2400÷64
=37.5(块)
40×60÷(5×5)
=2400÷25
=96(块)
40×60÷(3×3)
=2400÷9
≈267(块)
答:所以得选用边长是5分米的正方形地砖,一共需要96块。
【点睛】
本题考查长方形和正方形的面积,熟记公式是解题的关键。
23.44套
【解析】
根据题意,一套服装用布的米数是(1.9+1.5)米;求这匹布最多可以做这种服装的套数,就是求150里有多少个(1.9+1.5),用除法计算,计算结果用去尾法取整数。
1.9+1.5=3.4(米)
150÷3.4≈44(套)
答:用这匹布最多可以做44套这种服装。
【点睛】
本题考查小数除法的意义及应用,关键是理解去尾法的意义,即无论结果剩几米布,只要不够再做一套,就直接舍去。
24.24天
【解析】
我们用原计划每天修的千米数乘以天数就是要修的这条水渠的长度,再除以实际每天完成的千米数,就是实际要用的天数。
0.45×32÷0.6
=14.4÷0.6
=24(天)
答:实际用24天可以修完这条水渠。
【点睛】
此题属于工程问题,掌握“工作总量÷工作效率=工作时间”是解题关键。
25.16千米
【解析】
根据路程相遇时间速度之和,再用速度之和减去摩托车的速度,即可求得自行车的速度。
112÷1.6-54
=70-54
=16(千米时)
答:张叔叔骑自行车每小时行16千米。
【点睛】
本题考查相遇问题中的基本数量关系“速度和路程相遇时间”的灵活应用。
26.18千米
【解析】
首先根据:工作效率工作量工作时间,用这条公路的全长除以修完的天数,求出两队每天修公路的长度之和,再减去甲队每天修的长度,就是乙队每天修的长度。
(千米)
答:乙队每天修0.18千米。
【点睛】
本题考查小数四则运算的应用,掌握工作量、工作效率、工作时间之间的关系是解题的关键。
27.4千克
【解析】
根据题意,一箱苹果15千克,每千克11元,依据“单价×数量=总价”,求出买苹果花掉的钱数,再用总钱数减去买苹果花掉的钱数,求出买香蕉所用的钱数,再用买香蕉所用的钱数÷单价=香蕉的重量,列式解答即可。
11×15=165(元)
189.3-165=24.3(元)
24.3÷4.5=5.4(千克)
答:这把香蕉重5.4千克。
【点睛】
此题解答的关键是先认真分析题意,然后根据单价、数量和总价三者之间的关系进行解答即可得出结论。
28.460分钟
【解析】
妈妈一月份的话费25元超出了19元,所以妈妈首先打了400分钟的电话。25元超出19元的部分是6元,超出400分钟的时间按0.1元/分计算,那么用6元除以0.1元,可以求出妈妈超出了400分钟几分钟。最后,利用加法求出妈妈一月份一共打了多少分钟的电话。
400+(25-19)÷0.1
=400+6÷0.1
=400+60
=460(分钟)
答:妈妈1月份一共打了460分钟电话。
【点睛】
本题考查了经济问题,数量×单价=总价,所以数量=总价÷单价。
29.5小时
【解析】
根据相遇时间=路程和÷速度和,列式解答即可。
560÷(90+70)
=560÷160
=3.5(小时)
答:经过3.5小时两车相遇。
【点睛】
关键是理解速度、时间、路程之间的关系。
30.43米
【解析】
将明明的速度设为未知数,两人相遇时,两人的路程和等于两家的距离996米。根据这个数量关系,列方程解方程即可。
解:设明明每分钟走x米。
答:明明每分钟走43米。
【点睛】
本题考查了相遇问题,两人同时相向而行,相遇时两人的路程和等于两地的距离。
31.72本;24本
【解析】
设科技数有x本,那么故事书有3x本,故事书本数-科技数本数=48本,据此列方程解答。
解:设科技数有x本。
3x-x=48
2x=48
x=24
24×3=72(本)
答:
解析:72本;24本
【解析】
设科技数有x本,那么故事书有3x本,故事书本数-科技数本数=48本,据此列方程解答。
解:设科技数有x本。
3x-x=48
2x=48
x=24
24×3=72(本)
答:故事书有72本,科技数有24本。
【点睛】
此题考查了列方程解决问题,等量关系较明显,分别表示出两种书的本数是解题关键。
32.40cm
【解析】
根据平行四边形面积公式,先用底12cm乘高6cm,求出这个平行四边形的面积,再将其除以高9cm,求出对应的底。最后,将平行四边形的两个底相加再乘2,求出至少要用多长的铁丝。
12
解析:40cm
【解析】
根据平行四边形面积公式,先用底12cm乘高6cm,求出这个平行四边形的面积,再将其除以高9cm,求出对应的底。最后,将平行四边形的两个底相加再乘2,求出至少要用多长的铁丝。
12×6÷9=8(cm)
(8+12)×2
=20×2
=40(cm)
答:至少要用40cm长的铁丝。
【点睛】
本题考查了平行四边形的面积和周长,平行四边形面积=底×高,平行四边形的周长就是四个边的长度之和。
33.(1)64平方米
(2)384棵
【解析】
(1)菜地面积=平行四边形面积+三角形面积,平行四边形面积=底×高,三角形面积=底×高÷2;
(2)菜地面积×每平方米收的青菜数量=可以收的总数量,据此列
解析:(1)64平方米
(2)384棵
【解析】
(1)菜地面积=平行四边形面积+三角形面积,平行四边形面积=底×高,三角形面积=底×高÷2;
(2)菜地面积×每平方米收的青菜数量=可以收的总数量,据此列式解答。
(1)10×4+10×4.8÷2
=40+24
=64(平方米)
答:这块菜地的面积是64平方米。
(2)64×6=384(棵)
答:这块地一共可以收384棵青菜。
【点睛】
关键是掌握平行四边形和三角形面积公式。
34.270平方米
【解析】
看图,用篱笆的长度减去27米,可以求出这个梯形菜地的上下底之和,从而根据梯形的面积公式,列式求出菜地的面积。
(57-27)×18÷2
=30×18÷2
=270(平方米)
解析:270平方米
【解析】
看图,用篱笆的长度减去27米,可以求出这个梯形菜地的上下底之和,从而根据梯形的面积公式,列式求出菜地的面积。
(57-27)×18÷2
=30×18÷2
=270(平方米)
答:这块菜地的面积是270平方米。
【点睛】
本题考查了梯形的面积,梯形面积=(上底+下底)×高÷2。
35.3厘米
【解析】
平行四边形的面积为15×6=90(平方厘米);
则梯形的面积为(90+18)÷2=54(平方厘米);
其上底为54×2÷6-15=3(厘米)。
答:梯形的上底是3厘米。
解析:3厘米
【解析】
平行四边形的面积为15×6=90(平方厘米);
则梯形的面积为(90+18)÷2=54(平方厘米);
其上底为54×2÷6-15=3(厘米)。
答:梯形的上底是3厘米。
36.(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑
解析:(1) 825株花椒树, 4125株桑树.
(2)种桑树比较划算.
【解析】
(1)75×40+75×30÷2=4125(m2)
4125÷5=825(株)
可以种825株花椒树,可以种4125株桑树.
(2)4125×3.15-14437.5(元),
825×15=12375(元),14437.5>12375,所以种桑树比较划算.
37.18平方厘米
【解析】
解析:18平方厘米
【解析】
38.3平方厘米
【解析】
如图,将BC延长至H点,求三角形BCM比三角形DEM的面积大多少平方厘米,直接用三角形BEH的面积-长方形CDEH的面积即可。
10-7=3(厘米)
4+2=6(厘米)
3×6
解析:3平方厘米
【解析】
如图,将BC延长至H点,求三角形BCM比三角形DEM的面积大多少平方厘米,直接用三角形BEH的面积-长方形CDEH的面积即可。
10-7=3(厘米)
4+2=6(厘米)
3×6÷2-3×2
=9-6
=3(平方厘米)
答:三角形BCM比三角形DEM的面积大3平方厘米。
【点睛】
关键是作出辅助线,梯形CMEH是公有的部分,三角形BEH的面积-长方形CDEH的面积正好将其抵消。
39.够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积
解析:够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积,与估大的教室面积相比较,如果面积估大的教室都够铺,那么原来的教室面积就一定够铺,进而得出结论。注意单位的换算:1米=10分米。
8.8≈9
5.9≈6
9×6=54(平方米)
8分米=0.8米
0.8×0.8×100
=0.64×100
=64(平方米)
54<64,够。
答:100块够。
【点睛】
掌握用估算解决小数乘法应用题的方法是解题的关键。
40.(1)图见详解;6平方厘米
(2)11秒
【解析】
(1)用梯形的移动速度乘移动时间,求出直角梯形向右平移了多少厘米。据此,画出平移后的直角梯形。看图,平移后的图形和长方形的重叠部分是三角形,它的底
解析:(1)图见详解;6平方厘米
(2)11秒
【解析】
(1)用梯形的移动速度乘移动时间,求出直角梯形向右平移了多少厘米。据此,画出平移后的直角梯形。看图,平移后的图形和长方形的重叠部分是三角形,它的底是2厘米,高是6厘米,据此利用三角形的面积公式,列式计算出重叠部分的面积。
(2)用长方形的长减去梯形的下底4厘米,再将其除以梯形的移动速度,求出整个直角梯形与长方形完全重叠的时间维持了几秒。
(1)2×6=12(厘米),所以直角梯形向右平移了12厘米,平移后如下图:
重叠部分的面积:2×6÷2=6(平方厘米)
答:重叠部分的面积是6平方厘米。
(2)(26-4)÷2
=22÷2
=11(秒)
答:整个直角梯形与长方形完全重叠的时间维持了11秒。
【点睛】
本题考查了平移和三角形的面积,三角形的面积=底×高÷2。
41.小明95张;小芳19张
【解析】
由题可知:小明的邮票数量是小芳的5倍,设小芳的邮票数量为x张,则小明的邮票数量为5x张,根据“小明的邮票-38张=小芳的邮票+38张”列方程解答。
解:设小芳的邮票
解析:小明95张;小芳19张
【解析】
由题
展开阅读全文