收藏 分销(赏)

中考数学压轴题解析举例.doc

上传人:仙人****88 文档编号:5673616 上传时间:2024-11-15 格式:DOC 页数:5 大小:462.28KB 下载积分:10 金币
下载 相关 举报
中考数学压轴题解析举例.doc_第1页
第1页 / 共5页
中考数学压轴题解析举例.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
中考数学压轴题解析举例 1、如图1,抛物线与x轴交于A、B两点,与y轴交于点C,联结BC、AC. (1)求AB和OC的长; (2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作BC的平行线交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围; (3)在(2)的条件下,联结CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π). 图1 满分解答 (1)由,得A(-3,0)、B(6,0)、C(0,-9). 所以AB=9,OC=9. (2)如图2,因为DE//CB,所以△ADE∽△ACB. 所以. 而,AE=m, 所以. m的取值范围是0<m<9. 图2 图3 (3)如图2,因为DE//CB,所以. 因为△CDE与△ADE是同高三角形,所以. 所以. 当时,△CDE的面积最大,最大值为. 此时E是AB的中点,. 如图3,作EH⊥CB,垂足为H. 在Rt△BOC中,OB=6,OC=9,所以. 在Rt△BEH中,. 当⊙E与BC相切时,.所以. 2、如图1,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为. (1)求该二次函数的关系式; (2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围; (3)在该二次函数的图象上是否存在点D,使以A、B、C、D为顶点的四边形为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由. 图1 满分解答 (1)因为OC=1,△ABC的面积为,所以AB=. 设点A的坐标为(a,0),那么点B的坐标为(a+,0). 设抛物线的解析式为,代入点C(0,-1),得.解得或. 因为二次函数的解析式中,,所以抛物线的对称轴在y轴右侧.因此点A、B的坐标分别为,. 所以抛物线的解析式为. (2)如图2,因为,,所以.因此△AOC∽△COB.所以△ABC是以AB为斜边的直角三角形,外接圆的直径为AB. 因此m的取值范围是≤m≤. 图2 图3 图4 (3)设点D的坐标为. ①如图3,过点A作BC的平行线交抛物线于D,过点D作DE⊥x轴于E. 因为,所以.因此.解得.此时点D的坐标为. 过点B作AC的平行线交抛物线于D,过点D作DF⊥x轴于F.因为,所以.因此.解得.此时点D的坐标为. 综上所述,当D的坐标为或时,以A、B、C、D为顶点的四边形为直角梯形. 3、如图1,在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y. (1)求线段AD的长; (2)若EF⊥AB,当点E在斜边AB上移动时, ①求y与x的函数关系式(写出自变量x的取值范围); ②当x取何值时,y有最大值?并求出最大值. (3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由. 图1 满分解答 (1) 在Rt△ABC中, AC=3,BC=4,所以AB=5.在Rt△ACD中,. (2) ①如图2,当F在AC上时,.在Rt△AEF中,.所以. 如图3,当F在BC上时,.在Rt△BEF中,.所以. ②当时,的最大值为; 当时,的最大值为. 因此,当时,y的最大值为. 图2 图3 图4 (3)△ABC的周长等于12,面积等于6. 先假设EF平分△ABC的周长,那么AE=x,AF=6-x,x的变化范围为3<x≤5.因此.解方程,得. 因为在3≤x≤5范围内(如图4),因此存在直线EF将△ABC的周长和面积同时平分. 4、如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒. (1)求点C的坐标; (2)当∠BCP=15°时,求t的值; (3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值. 图1 答案 (1)点C的坐标为(0,3). (2)如图2,当P在B的右侧,∠BCP=15°时,∠PCO=30°,; 如图3,当P在B的左侧,∠BCP=15°时,∠CPO=30°,. 图2 图3 (3)如图4,当⊙P与直线BC相切时,t=1; 如图5,当⊙P与直线DC相切时,t=4; 如图6,当⊙P与直线AD相切时,t=5.6. 图4 图5 图6 5、如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点. (1)求直线AC的解析式及B、D两点的坐标; (2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由; (3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标. 图1 满分解答 (1)由y=-x2+2x+3=-(x+1)(x-3)=-(x-1)2+4, 得A(-1, 0)、B(3, 0)、C(0, 3)、D(1, 4). 直线AC的解析式是y=3x+3. (2)Q1(2, 3),Q2(),Q3(). (3)设点B关于直线AC的对称点为B′,联结BB′交AC于F. 联结B′D,B′D与交AC的交点就是要探求的点M. 作B′E⊥x轴于E,那么△BB′E∽△BAF∽△CAO. 在Rt△BAF中,,AB=4,所以. 在Rt△BB′E中,,,所以,. 所以.所以点B′的坐标为. 因为点M在直线y=3x+3上,设点M的坐标为(x, 3x+3). 由,得.所以. 解得.所以点M的坐标为. 6、如图1,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分的面积为S. (1)当t=1时,正方形EFGH的边长是________;当t=3时,正方形EFGH的边长是________; (2)当1<t≤2时,求S与t的函数关系式; (3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少? 满分解答 (1)当t=1时,EF=2;当t=3时,EF=4. (2)①如图1,当时,.所以. ②如图2,当时,,,. 于是, . 所以. ③如图3,当时,,,. 所以. 图2 图3 图4 (3)如图4,图5,图6,图7,重叠部分的最大面积是图6所示的六边形EFNDQN,S的最大值为,此时. 图5 图6 7.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E. ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值. 解:(1)点A的坐标为(4,8) …………………1分 将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx 8=16a+4b 得 0=64a+8b 解 得a=-,b=4 ∴抛物线的解析式为:y=-x2+4x …………………3分 (2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即= ∴PE=AP=t.PB=8-t. ∴点E的坐标为(4+t,8-t). ∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分 ∴EG=-t2+8-(8-t) =-t2+t. ∵-<0,∴当t=4时,线段EG最长为2. …………………7分 ②共有三个时刻. …………………8分 t1=, t2=,t3= . …………………11分 19.(09年湖南省长沙市)如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC. (1)求实数a,b,c的值; (2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标; (3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服