1、第四节 动量守恒定律的应用教学目标 1学会分析动量守恒的条件。 2学会选择正方向,化一维矢量运算为代数运算。 3会应用动量守恒定律解决碰撞、反冲等物体相互作用的问题(仅限于一维情况),知道应用动量守恒定律解决实际问题的基本思路和方法。重点、难点分析 1应用动量守恒定律解决实际问题的基本思路和方法是本节重点。 2难点是矢量性问题与参照系的选择对初学者感到不适应。教 具 1碰撞球系统(两球和多球); 2反冲小车。教学过程 本节是继动量守恒定律理论课之后的习题课。 1讨论动量守恒的基本条件 例1在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为 和 讨论此系统在振动时动量是否守恒?分析:
2、由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等。 例2承上题,但水平地面不光滑,与两振子的动摩擦因数相同,讨论m1=m2和m1m2 两种情况下振动系统的动全是否守恒。 分析:m1和m2所受摩擦力分别为和。由于振动时两振子的运动方向总是相反的,所以f1和f2的方向总是相反的。 板书画图:对m1和m2振动系统来说合外力,但注意是矢量合。实际运算时为 板书: 显然,若m1=m2,则,则动量守恒; 若 m1m2,则 ,则动量不守恒。 向学生提出问题: (l)m1=m2时动量守恒,那么动量是多少? (2)m1m2时动量不守恒
3、,那么振动情况可能是怎样的? 与学生共同分析: (l)m1=m2时动量守恒,系统的总动量为零。开始时(释放振子时)p=0,此后振动时, 当p1和p2均不为零时,它们的大小是相等的,但方向是相反的,所以总动量仍为零。数学表达式可写成(2)m1m2时。其方向取决于。其方向取决于m1和m2的大小以及运动方向。比如m1m2,一开始m1向右(m2向左)运动,结果系统所受合外力方向向左(f1向左,f2向有,而且f1f2)。结果是在前半个周期里整个系统一边振动一边向左移动。进一步提出问题:在m1=m2的情况下,振动系统的动量守恒,其机械能是否守恒?分析:振动是动能和弹性势能间的能量转化。但由于有摩擦存在,在
4、动能和弹性势能往复转化的过程中势必有一部分能量变为热损耗,直至把全部原有的机械能都转化为热,振动停止。所以虽然动量守恒(p=0),但机械能不守恒。(从振动到不振动)2学习设置正方向,变一维矢量运算为代数运算例 3抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1+m2 )g,可见系统的动量并不守恒。但在水平方向上可以认为系统不受外力,所以在水平方向上动量是守恒的。强调:正是由于动量是矢量,所以动量守恒定律可在某个方向上
5、应用。那么手雷在以10m/s飞行时空气阻力(水平方向)是不是应该考虑呢?(上述问题学生可能会提出,若学生不提出,教师应向学生提出此问题。)一般说当v=10m/s时空气阻力是应考虑,但爆炸力(内力)比这一阻力大的多,所以这一瞬间空气阻力可以不计。即当内力远大于外力时,外力可以不计,系统的动量近似守恒。板书: 解题过程:设手雷原飞行方向为正方向,则的速度。m2的速度方向不清,暂设为正方向。板书:设原飞行方向为正方向,则,;m1=0.3kg,m2=0.2kg 系统动量守恒:此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反。例4机关枪重8kg,射出的子弹质量
6、为20克,若子弹的出口速度是1000m/s,则机枪的后退速度是多少?分析:在水平方向火药的爆炸力远大于此瞬间机枪受的外力(枪手的依托力),故可认为在水平方向动量守恒。即子弹向前的动量等于机枪向后的动量,总动量维持“零”值不变。板书:设子弹速度v,质量m;机枪后退速度v,质量M。则由动量守恒有小结:上述两例都属于“反冲”和“爆炸”一类的问题,其特点是,系统近似动量守恒。演示实验:反冲小车实验点燃酒精,将水烧成蒸汽,气压增大后将试管塞弹出,与此同时,小车后退。与爆炸和反冲一类问题相似的还有碰撞类问题。演示小球碰撞(两个)实验。说明在碰撞时水平方向外力为零(竖直方向有向心力),因此水平方向动量守恒。
7、结论:碰撞时两球交换动量(),系统的总动量保持不变。例5. 讨论质量为的球以速度去碰撞静止的质量为的球后,两球的速度各是多少?设碰撞过程中没有能量损失,水平面光滑。设A球的初速度的方向为正方向。由动量守恒和能量守恒可列出下述方程: 解方程和可以得到 引导学生讨论:(1)由表达式可知恒大于零,即B球肯定是向前运动的,这与生活中观察到的各种现象是吻合的。(2)由表达式可知当时,即碰后A球依然向前滚动,不过速度已比原来小了当时,即碰后A球反弹,且一般情况下速度也小于了。当,这就是刚才看到的实验,即A、B两球互换动量的情形。(3)讨论极端情形:若时,即原速反弹;而 ,即几乎不动。这就好像是生活中的小皮
8、球撞墙的情形。在热学部分中气体分子与器壁碰撞的模型就属于这种情形。(4)由于总是小于的,所以通过碰撞可以使一个物体减速,在核反应堆中利用中子与碳原子(石墨或重水)的碰撞将快中子变为慢中子。3动量守恒定律是对同一个惯性参照系成立的。例6 质量为M的平板车静止在水平路面上,车与路面间的摩擦不计。质量为m的人从车的左端走到右端,已知车长为L,求在此期间车行的行距离?分析:由动量守恒定律可知人向右的动量应等于车向左的动量,即mv=MV用位移与时间的比表示速度应有解得 讨论:这里容易发生的错误是,结果得到x=L动量守恒定律中的各个速度必须是对同一个惯性参照系而言的速度。而将v写成是在小车参照系中的速度,不是对地面参照系而言的速度,以致发生上述错误。4小结:应用动量守恒定律时必须注意:(1)所研究的系统是否动量守恒。(2)所研究的系统是否在某一方向上动量守恒。(3)所研究的系统是否满足的条件,从而可以近似地认为动量守恒。(4)列出动量守恒式时注意所有的速度都是对同一个惯性参照系的。(5)一般情形下应先规定一个正方向,以此来确定各个速度的方向(即以代数计算代替一维矢量计算)。教学效果分析:共6页 第6页