资源描述
资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
电路板设计规范
目 录
第一部分: 电路板设计规范
1、 适用范围 …………………………………………………… 3
2、 主要目的 …………………………………………………… 3
3、 PCB设计前准备 …………………….…………………….. 3
4、 设计流程 …………………………………………………… 4
5、 设置规则 …………………………………………………… 6
6、 PCB布线 …………………………………………………… 10
7、 PCB设计遵循的规则 ……………………………………… 10
8、 电路板命名规则 …………………………….……………… 19
9、 设计评审 …………………………………………………… 20
10、 制板手续 …………………………………………………… 20
11、 部分板的特殊要求 ………………………………………… 21
第二部分: 附录
1、 混合信号PCB分区设计…………………………………….. 22
2、 PCB板的加工标准 ……………………………………..…. 25
3、 《常见元件封装命名规则》 ..………………………..…….. 28
4、 产品开发部焊板申请单 ………………………………….... 32
5、 营口欧立达制板工艺能力 ………………………………… 33
6、 参考资料 ………………………………………………….... 42
第一部分: 电路板设计规范
1 适用范围:
本公司CAD设计的所有印制电路板( 简称PCB) 。
2 主要目的 :
2.1 规范PCB的设计流程。
2.2 保证PCB设计质量和提高设计效率。
2.3 提高PCB设计的可生产性、 可测试性、 可维护性。
3 PCB设计前准备:
3.1 硬件工程师需提前准备的资料
1. 准确无误的原理图包括书面文件和电子档以及无误的网络表。
2. 带有元件编码的正式BOM。对于封装库中没有的元件应具备相关元器件的DATASHEET( 技术资料) 或实物( 并指定引脚的定义顺序) 。
3. PCB大致布局图或重要单元、 核心电路摆放位置。PCB结构图, 应标明PCB外形、 安装孔、 定位元件、 禁布区等相关信息。
4. 设计要求
A. 1A以上大电流元件、 网络。
B. 重要的时钟信号、 差分信号以及高速数字信号。
C. 模拟小信号等易被干扰信号。
D. 其它特殊要求的信号。
5. PCB特殊要求说明:
A. 差分布线、 需屏蔽网络、 特性阻抗网络、 等延时网络等。
B. 特殊元件的禁止布线区、 锡膏偏移、 阻焊开窗以及其它结构的特殊要求。
3.2 细阅读原理图, 了解电路架构, 理解电路的工作条件。
3.3 与硬件工程师充分交流的基础上, 确认PCB中关键的网络, 了解高速元件的设计要求。
4 设计流程:
4.1 定元件的封装
1. 打开网络表( 能够利用一些编辑器辅助编辑) , 将所有封装浏览一遍, 确保所有元件的封装都正确无误而且元件库中包含所有元件的封装, 网络表中所有信息全部大写。元件具体命名规则详见《常见元件封装命名规则》。
2. 标准元件全部采用公司统一元件库中的封装。
3. 元件库中不存在的封装, 则依据元件DATASHEET或实物设计其封装, 确认无误后归入公司统一元件库中。
4.2 建立PCB板框
1. 根据PCB结构图, 或相应的模板建立PCB文件, 包括安装孔、 禁布区等相关信息。
2. 尺寸标注。在钻孔层中应标明PCB的精确结构, 且不能够形成封闭尺寸标注。
4.3 载入网络表
1. 载入网表并排除所有载入问题, 具体请看《PROTEL技术大全》。其它软件载入问题有很多相似之处, 能够借鉴。
2. 如果使用PROTEL, 网表须载入两次以上( 没有任何提示信息) 才能够确认载入无误。
4.4 布局
1. 首先要确定参考点。
一般参考点都设置在左边和底边的边框线的交点( 或延长线的交点) 上或印制板的插件的第一个焊盘。
2. 一但参考点确定以后, 元件布局、 布线均以此参考点为准。布局推荐使用25MIL网格。
3. 根据要求先将所有有定位要求的元件固定并锁定。
4. 布局的基本原则
A. 遵循先难后易、 先大后小的原则。
B. 布局能够参考硬件工程师提供的原理图和大致的布局, 根据信号流向规律放置主要原器件。
C. 总的连线尽可能的短, 关键信号线最短。
D. 强信号、 弱信号、 高电压信号和弱电压信号要完全分开。
E. 高频元件间隔要充分。
F. 模拟信号、 数字信号分开。
5. 相同结构电路部分应尽可能采取对称布局。
6. 按照均匀分布、 重心平衡、 版面美观的标准来优化布局。
7. 同类型的元件应该在X或Y方向上一致。同一类型的有极性分立元件也要力争在X或Y方向上一致, 以便于生产和调试。
8. 元件的放置要便于调试和维修, 大元件边上不能放置小元件, 需要调试的元件周围应有足够的空间。发热元件应有足够的空间以利于散热。热敏元件应远离发热元件。
9. 双列直插元件相互的距离要大于2毫米。BGA与相临元件距离大于5毫米。阻容等贴片小元件元件相互距离大于0.7毫米。贴片元件焊盘外侧与相临插装元件焊盘外侧要大于2毫米。压接元件周围5毫米不能够放置插装原器件。焊接面周围5毫米内不能够放置贴装元件。
10. 集成电路的去偶电容应尽量靠近芯片的电源脚, 高频最靠近为原则。使之与电源和地之间形成回路最短。
11. 旁路电容应均匀分布在集成电路周围。
12. 元件布局时候, 使用同一种电源的元件应考虑尽量放在一起, 以便于将来的电源分割。
13. 用于阻抗匹配目的的阻容器件的放置, 应根据其属性合理布局。
A. 匹配电容电阻的的布局要分清楚其用法, 对于多负载的终端匹配一定要放在信号的最远端进行匹配。
B. 联匹配电阻布局时候要靠近该信号的驱动端, 距离一般不超过500MIL。
14. 调整字符。所有字符不能够上盘, 要保证装配以后还能够清晰看到字符信息。所有字符在X或Y方向上应一致。字符、 丝引大小要统一。
15. 放置PCB的MARK点。
5 设置规则:
5.1 压层顺序的安排
在高速数字电路中, 电源与地层应尽量靠在一起, 中间不安排布线。所有布线层都尽量靠近一平面, 优先选择地平面作为隔离层。
为了减少信号间的干扰, 相临布线层信号走向应相互垂直, 如果无法避免同一方向则应极力避免相临信号层同一方向的信号重叠。
能够根据需求设置几个阻抗层, 阻抗层要按要求标注清楚, 注意参考层的选择, 将所有有阻抗要求的信号安排在阻抗层上面。
5.2 线宽和线间距的设置
1. 当信号平均电流比较大的时候, 需要考虑线宽与电流的关系, 具体情况能够参考下表
不同厚度、 不同宽度的铜铂的载流表:
注: ( 电流的单位为”A”)
A. 在PCB设计加工中常见OZ( 盎司) 作为铜皮的厚度单位。1 OZ铜厚定义为一平方英寸面积内铜铂的重量为一盎司, 对应的物理厚度为35UM。
B. 当铜皮作导线经过较大电流时, 铜铂宽度与载流量的关系应参考表中的数据降额50%去选择使用。
2. 信号线设定。当单板的密度越高越倾向于使用更细的线宽和更小的线间距。
3. 电路工作电压。线间距的设置应考虑其介电强度。
4. 可靠性要求较高的时候应使用较宽的布线和较大的线间距。
5. 等长、 差分等设置。
6. 有阻抗要求的信号线, 应计算其线宽线间距并选好参考层, 且其压层顺序和层厚度一旦定下来就不能够再更改。
5.3 过孔设置
1. 过孔焊盘与孔径的设置能够参照下表:
2. BGA表贴焊盘、 过孔焊盘、 过孔孔径能够参照下表:
更小节距的BGA, 根据具体情况结合PCB厂的生产工艺设定。
3. 盲孔和埋孔
盲孔是连接表层和内层而不贯穿的过孔, 埋孔是连接内层而表层看不到的过孔。这两种过孔尺寸能够参照普经过孔来设置。
应用盲孔和埋孔设计时应与PCB生产厂取得联系, 根据具体工艺要求来设定。
4. 径厚比
印制板的板厚决定了该板的最小过孔, 板厚孔径比应小于10~12
印制板厚度与最小过孔关系表:
5.4 测试孔
测试孔能够兼做导通孔使用, 焊盘直径应不小于25MIL, 测试孔中心距应不小于50MIL。测试孔避免放置在芯片底下。
5.5 特殊布线规则设定
特殊布线规则设定主要是指某些特殊区域需要用到不同于一般设置的布线参数。如某些高密度元件需要用到较细的线宽、 较小的线间距和较小的过孔。某些网络的布线参数需要调整等。在布线前需要将所有规则加以设置和确认。
5.6 平面的定义与分割
1. 平面层一般用于电路的电源和地层( 参考层) , 由于电路中可能用到不同的电源和地层, 需要对电源层和地层进行分隔, 其分隔宽度要考虑不同电源之间的电位差, 电位差大于12V时, 分隔宽度大于50mil, 反之, 可选20~25mil, 小板, 如内存条等, 能够使用小到15mil宽分割线。条件允许的情况下, 分隔线应尽量的宽。
2. 平面分隔要考虑高速信号回流路径的完整性。
3. 当由于高速信号的回流路径遭到破坏时, 应当在其它布线层给予补偿。例如可用接地的铜箔将该信号网络包围, 以提供信号的地回路。
4. 平面分割后, 要确认没有形成孤立的分割区域, 实际有效区域足够宽。
5.7 布线前仿真( 布局评估, 待扩充)
6 PCB布线
6.1 布线优先次序
1. 密度疏松原则: 从印制板上连接关系简单的器件着手布线, 从连线最疏松的区域开始布线, 以调节个人状态。
2. 核心优先原则: 例如DDR、 RAM等核心部分应优先布线, 模拟信号传输线应提供专层电源、 地回路。其它次要信号要顾全整体, 不能够和关键信号想抵触。
3. 关键信号线优先: 电源、 模拟小信号、 高速信号、 时钟信号和同步信号等关键信号优先布线。
6.2 尽量为时钟信号、 高频信号、 敏感信号等关键信号提供专门的布线层, 并保证其最小的回路面积。应采取手工优先布线、 屏蔽和加大安全间距等方法, 保证信号质量。
6.3 电源层和地层之间的EMC环境较差, 应避免布置对干扰敏感的信号。
6.4 有阻抗控制要求的网络应布置在阻抗控制层上, 相同阻抗的差分网络应采用相同的线宽和线间距。
7 PCB设计遵循的规则:
7.1 地线回路规则:
环路最小规则, 即信号线与其回路构成的环面积要尽可能小, 环面积要尽可能小, 环面积越小, 对外的辐射越少, 接收外界的干扰也越小。针对这一规则, 在地平面分割时, 要考虑到地平面与重要信号走线的分布, 防止由于地平面开槽等带来的问题; 在双层板设计中, 在为电源留下足够空间的情况下, 应该将留下的部分用参考地填充, 且增加一些必要的过孔, 将双面信号有效连接起来, 对一些关键信号尽量采用地线隔离, 对一些频率较高的设计, 需特别考虑其地平面信号回路问题, 建议采用多层板为宜。
7.2 窜扰控制
窜扰( CrossTalk) 是指PCB上不同网络之间因较长的平行布线引起的相互干扰, 主要是由于平行线间的分布电容和分布电感的作用。克服窜扰的主要措施是:
1.加大平行布线的间距, 遵循3W规则。
2.在平行线间插入接地的隔离线。
3.减少布线层与地平面的距离。
7.3 屏蔽保护
对应地线回路规则, 实际上也是为了尽量减小信号的回路面积, 多用于一些比较重要的信号, 如时钟信号, 同步信号; 对一些特别重要, 频率特别高的信号, 应该考虑采用铜轴电缆屏蔽结构设计, 即将所布的线上下左右用地线隔离, 而且还要考虑好如何有效的让屏蔽地与实际地平面有效结合。
7.4 走线方向控制规则
相邻层的走线方向成正交结构, 避免将不同的信号线在相邻层走成同一方向, 以减少不必要的层间窜扰; 当由于板结构限制( 如某些背板) 难以避免出现该情况, 特别是信号速率较高时, 应考虑用地平面隔离各布线层, 用地信号线隔离各信号线。
7.5 走线的开环检查规则
一般不允许出现一端浮空的布线, 主要是为了避免产生”天线效应”, 减少不必要的干扰辐射和接受, 否则可能带来不可预知的结果。
7.6 阻抗匹配检查规则
同一网络的布线宽度应保持一致, 线宽的变化会造成线路特性阻抗的不均匀, 当传输的速度较高时会产生反射, 在设计中应该尽量避免这种情况。在某些条件下, 如接插件引出线, BGA封装的引出线类似的结构时, 可能无法避免线宽的变化, 应该尽量减少中间不一致部分的有效长度。
7.7 走线闭环检查规则
防止信号线在不同层间形成自环。在多层板设计中容易发生此类问题, 自环将引起辐射干扰。
7.8 分支长度控制规则
尽量控制分支的长度, 分支的长度应尽量短, 一般的要求是Tdelay≤Trise/20。
7.9 走线长度控制规则
走线长度控制规则即短线规则, 在设计时应该尽量让布线长度尽量短, 以减少走线长度带来的干扰问题, 特别是一些重要信号线, 如时钟线, 务必将其振荡器放在离器件很近的地方。对驱动多个器件的情况, 应根据具体情况决定采用何种网络拓朴结构。
7.10 倒角规则
PCB设计中应避免产生锐角和直角, 产生不必要的辐射, 同时工艺性能也不好。所有线与线的夹角应≥135°。
7.11 器件去藕规则
1.在印制板上增加必要的去藕电容, 滤除电源上的干扰信号, 使电源信号稳定, 在多层板中, 对去藕电容的位置一般要求不太高, 但对双层板, 去藕电容的布局及电源的布线方式将直接影响到整个系统的稳定性, 有时甚至关系到设计的成败。
2.在双层板设计中, 一般应该使电流先经过滤波电容滤波再供器件使用, 同时还要充分考虑到由于器件产生的电源噪声对下游器件的影响, 一般来说, 采用总线结构设计比较好, 在设计时还要考虑到由于传输距离过长而带来的电压跌落给器件造成的影响, 必要时增加一些电源滤波环路, 避免产生电位差。
3.在高速电路设计中, 能否正确地使用去藕电容, 关系到整个板的稳定性。
7.12 滤波电容的配置规则( 高速电路设计参考)
1.高频滤波电容的配置
A.小于10个输出的小规模集成电路, 工作频率≤50MHz时, 至少配接一个0.1μf的滤波电容。工作频率≥50MHz时, 每个电源引脚配接一个0.1μf的滤波电容。
B.对于中大规模集成电路, 每个电源引脚配接一个0.1μf的滤波电容。对电源引脚冗余量较大的电路也可按输出引脚的个数计算配接电容的个数, 每5个输出配接一个0.1μf滤波电容。
C.对无有源器件的区域, 每6cm2至少配接一个0.1μf。
D.对于超高频电路, 每个电源引脚配接一个1000pf的滤波电容。对电源引脚冗余量较大的电路也可按输出引脚的个数计算配接电容的个数, 每5个输出配接一个1000pf滤波电容。
E.专用电路可参照应用手册推荐的滤波电容配置。
F.对于有多种电源存在的电路或区域, 应对每种电源分别按1、 2和3条配接滤波电容。
G.高频滤波电容应尽可能靠近IC电路的电源引脚处。
H.滤波电容焊盘至连接盘的连线应采用0.3mm的粗线连接, 互连长度应≤1.27mm。
2.低频滤波电容的配置
A.每5只高频滤波电容至少配接一只10μf低频的滤波电容;
B.每5只10μf至少配接两只47μf低频的滤波电容;
C.每100cm2范围内, 至少配接1只220μf或470μf低频滤波电容;
D.每个模块电源出口周围应至少配置2只220μf或470μf电容, 如空间允许, 应适当增加电容的配置数量 ;
E.低频的滤波电容应围绕被滤波的电路均匀放置。
7.13 器件布局分区/分层规则
1.主要是为了防止不同工作频率的模块之间的互相干扰, 同时尽量缩短高频部分的布线长度。一般将高频的部分设在接口部分以减少布线长度, 当然这样的布局也要考虑到低频信号可能受到的干扰。同时还要考虑到高/低频部分地平面的分割问题, 一般采用将二者的地分割, 再在接口处单点相接。
2.对混合电路, 也有将模拟与数字电路分别布置在印制板的两面, 分别使用不同的层布线, 中间用地层隔离的方式。
7.14 孤立铜区控制规则
孤立铜区也叫铜岛, 它的出现, 将带来一些不可预知的问题, 因此将孤立铜区与别的信号相连, 有助于改进信号质量。一般是将孤立铜区接地或删除。在实际的制作中, PCB厂家将一些板的空置部分增加了一些铜箔, 这主要是为了方便印制板加工, 同时对防止印制板翘曲也有一定的作用。
7.15 电源与地线层的完整性规则
对于导通孔密集的区域, 要注意避免孔在电源和地层的挖空区域相互连接, 形成对平面层的分割, 从而破坏平面层的完整性, 并进而导致信号线在地层 的回路面积增大。
7.16 重叠电源与地线层规则
不同电源层在空间上要避免重叠, 主要是为了减少不同电源之间的干扰, 特别是一些电压相差很大的电源之间, 电源平面的重叠问题一定要设法避免, 难以避免时可考虑中间隔地层。
7.17 3W规则
为了减少线间窜扰, 应保证线间距足够大, 当线中心距不少于3倍线宽时, 则可保持70%的电场不互相干扰, 称为3W规则。如要达到98%的电场不互相干扰, 可使用10W规则。
7.18 20H规则
由于电源层与地层之间的电场是变化的, 在板的边缘会向外辐射电磁干扰。称为边缘效应。能够将电源层内缩, 使得电场只在接地层的范围内传导。以一个H( 电源和地之间的介质厚度) 为单位, 若内缩20H则能够将70%的电场限制在接地边沿内; 内缩100H则能够将98%的电场限制在内。
7.19 5~5规则
印制板层数选择规则, 即时钟频率到5MHz或脉冲上升时间小于5ns, 则PCB板须采用多层板, 这是一般的规则, 有的时候出于成本考虑, 采用双层板结构时, 这种情况下, 最好将印制板的一面做为一个完整的地平面。
8: 电路板命名规则
□□□□ □□ □□
版本号: 00-99
板功能: 01-主板 (综合控制板)
02-计数板
03-信号发射板
04-信号接收板
05-信号采集板
06-电源板
07-电源转接板
板用途: MQB-燃气表
ZDB-直读表
SB -水表
RLB-热量表
GJQ-采集器
JZQ-集中器
COM-通讯(232或485通讯)
CARD-卡座
注: 1、 PCB板上同时标出设计的完成日期( 如: .02.22) 。
2 、 对于卡座板还应在PCB板上同时标出其所用的卡座的型号, 另外其文件名中”板功能”项的数据可作为此卡座板的特殊用途标识( 适用的表型等) 。
9 设计评审:
设计完成后, PCB设计者须自行检查以下项目。
9.1 检查高频、 高速、 时钟即其它脆弱信号线, 是否回路面积最小、 是否远离干扰源、 是否有多余的过孔和绕线、 是否有跨地层分割区。
9.2 检查是否有平行线过长, 平行线是否尽量分开。
9.3 检查晶体、 变压器、 光藕、 电源模块下面是否有信号线穿过, 应尽量避免在其下穿线, 特别是晶体下面应尽量铺设接地的铜皮。
9.4 检查定位孔、 定位件是否与结构图一致, SMT定位光标是否加上并符合工艺要求。
9.5 检查器件的序号是否按从左到右、 从下到上的原则归属无误的摆放, 而且无丝印覆盖焊盘; 检查须标注的板号、 版本号是否符合用户要求。
9.6 报告布线完成情况是否百分之百; 是否有线头; 是否有孤立的铜皮。
9.7 检查电源、 地的分割是否正确, 单点共地已作正确处理。
9.8 PCB生成的网表和原网表进行校对, 确认连接关系的正确。
9.9 工艺审查中发现的问题, 积极改进, 并有所记录, 避免同样的问题再犯。
10 制板手续:
PCB板图发给制板厂时须按以下程序操作:
10.1 填写”制板申请” , 其格式如附录”产品开发部焊板申请单”所示。
10.2 编写”制板说明”, 其内容应包括板图文件名、 板厚、 铜箔厚度、 数量、 时间、 其它工艺要求及设计者的联系方式。
10.3 将”制板申请”、 ”制板说明”、 PCD板图一同提供给本单位制板对外联系人联系制板厂做板。
10.4 如果板图有特殊的尺寸要求, 则应同时给制板厂提供机械图纸并标明正负误差。
10.5电路改版需做好改版记录( 包括改版原因和改版内容) 并同时做好版本备份( 包括此版本的原理图、 板图、 设计日期和改版记录等) 。
11 部分板的特殊要求:
11.1 本单位卡座板的厚度一般为1.2mm, 表内主板的板厚一般为1.6mm, ZDB A采样板的信号收发板的厚度为为0.5mm, ZDB A采样板主板的厚度为为1.2mm。
第二部分: 附录
附录B: 混合信号PCB分区设计
混合信号电路PCB的设计很难, 零件的布局,布线以及电源和地线的处理将影响到电路性能和电磁相容性能。本文介绍的地和电源的分区设计能最佳化混合信号电路的性能。
如何降低数字信号和模拟信号的相互干扰呢?在设计之前必须了解电磁相容(EMC)的两个基本原则。
1.尽可能降低电流回路的面积;
2.系统只采取一个参考面。
如果系统存在两个参考面, 就有可能形成一个偶极天线( 注: 小型偶极天线的辐射大小与线的长度, 流过电流的大小的频率成正比) ; 而如果信号不能由尽可能小的环路返回, 就有可能形成一个大的环状天线( 注: 大型环状天线的辐射大小与环路面积, 流过环路的电流大小及频率的平方成正比) 。在设计中应该尽量避免。
有人建议将混合信号电路板上的数字地和模拟地分开, 这样能实现数字地与模拟地之间的隔离。尽管这种方法可行, 可是存在很多潜在的问题, 在复杂的大系统中问题特别突出。一旦跨越分割间隙布线, 电磁辐射和信号串扰会急剧增加。在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
如上图所示, 我们采用上述分割方法, 而且信号线跨越了两地间的间隙, 信号返回的路径是什么呢? 假定被分割的两个地在某处连在一起( 一般情况下是在某个位置单点连接) , 在这种情况下, 地电流将形成一个大的环路。流经大环路的高频电流会产生辐射和很高的地电感, 如果流过环路的是低电平模拟电流, 该电流很容易受到外部信号干扰。最糟糕的是当把分割地在电源处连接在一起时, 将形成一个非常大的电流环路。另外, 模拟地和数字地由一个长导线连接在一起会构成偶极天线。
了解电流回流到地的路径和方式是最佳化混合信号电路板设计的关键, 不能仅仅考虑信号从何处流过, 而忽略了电流的具体的路径。
如果必须对地线层进行分割,而且必须由分割之间的间隙布线, 能够先在被分割的地之间进行单点连接, 形成两个地之间的连接桥, 然后由该连接桥布线。这样,在每一个信号线的下方都能够提供一个直接的电流回流路径, 从而使形成的环路面积很小。
混合信号PCB设计是一个复杂的过程,设计过程要注意以下几点:
1. 将PCB分区为独立的模拟部分和数字部分;
2. 合适的零件布局;
3. A/D转换器跨分区放置;
4. 不要对地进行分割。在电路板的模拟部分和数字部分下面设统一地;
5. 在电路板的所有层中,数字信号只能在电路板的数字部分布线,模拟信号只能在电路板的模拟部分布线;
6. 实现模拟类比和数字电源分割;
7. 布线不能跨越分割电源面之间的间隙;
8. 必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上;
9. 分析返回地电流实际流过的路径和方式;
10.采用正确的布线规则。
PCB板的加工标准:
一、 线路板:
1、 元件孔( 包括过孔) : 将所有元件孔及过孔归类, 便于数控钻统一库区钻孔。
原则: 宁大勿小。
焊孔与焊盘值对应表如下:
孔 径
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
焊盘
最小值
0.5
0.6
0.9
1.0
1.1
1.2
1.4
1.5
1.7
最佳值
0.6
0.8
1.0
1.2
1.27
1.6
1.7
2.0
2.1
红色部分为推荐值。
注: ①以上适于双面板或工艺为焊点铅锡的单面板。
②焊盘最小值只用于线条极密的印制板。
③对于铜面工艺的单面板, 焊盘应在允许的范围内尽可能大些, 以便于加工。
应了解一些元件管脚的尺寸。以下是常见的元件管脚尺寸及焊孔尺寸, 特殊情况特殊对待。
●一般元器件:
1/8W、 1/4W的金属膜电阻, 对应焊孔为ф0.8mm— ф0.9mm;
1/2W、 1W、 2W的电阻, 对应焊孔为ф1—1.5mm;
独石电容、 瓷介电容、 电解电容, 压值为16V或25V, 对应焊孔为ф0.9mm;
●二极管ф1mm, 小三极管ф0.8mm-ф0.9mm。
●接插件:
管脚间距为2.54mm的插座,对应焊孔为ф1.1mm;
管脚间距为5mm的插座,对应焊孔为ф1.3mm—1.5mm;
管脚间距为8(10)mm的插座,对应焊孔为ф1.8mm—2mm;
继电器: 常见五脚继电器焊孔为ф1.2mm,八脚ф1mm,扁脚焊孔为长方形1×3或1×5视具体形状。
●保险丝座: 长方形孔1×3。
●稳压块( 7805, 7812…) 插脚孔ф1.2mm, 安装孔ф3.2mm。
2、 过孔: 最小0.4MM,对应盘0.6MM以上。除特殊要求和用户提供GERBER文件( 光绘文件) 外, 过孔同元件孔一样, 不上阻焊。
3、 安装孔:
一、 为方便生产, 减小工序, 防止二次上钻床。小于或等于5.8mm以下的安装孔按沉铜处理。
①安装孔需留有焊盘,其直径应至少大于内径1mm.
②安装孔不需要留焊盘时,应在对应位置上放置0.2mm盘。孔按实际大小。阻焊层放焊点比实际孔径小0.3mm。
二、 超过5.8mm的大孔或异形孔, 其轮廓线统一用禁止布线层表示。注意: 最小铣刀直径为0.8mm。常见为1.2mm 1.6mm铣刀。
4、 长孔:
放置要求: 可根据用户文件的实际要求, 在禁线层上画长宽一致的线条.
5、 线:
曝光线宽≥0.3mm, 极特殊情况下可为0.2mm或0.25mm; 网印线宽≥0.35mm; 线(盘),盘( 盘) 间距≥0.25MM。以上各数据, 推荐均达到0.3mm以上。
除特殊要求外,线条距成形边≥0.3mm( 鉴于电子产品走电流, 为防止漏电, 下壳接地等情况发生, 推荐达到0.5mm) 以上保证成品率。用户文件覆铜过于外成型线或边近于成型线, 要做削铜处理, 铝基板线条距成形边≥0.6mm以上保证成品率。
6、 字符:
字符的位置及高度遵照原设计, 对于摆放位置不规范的图形, 将其移至适当位置。
生产上要求: 字的线宽≥0.2mm, 0.2mm为最佳;
除特殊要求外, 所有的字符不得遮盖焊盘。编辑时须咬字处理!
7、 插脚镀金工艺线:
插脚引出线的线宽≥0.4mm, 拼版之间要互相连接, 引线长度直至外框线。
8、 划槽:
正常图形拼版时不留缝, 拼版之间可不留划槽线, 在拼版外形四周留出划槽线。
靠近板边有细线不能移动时, 拼版时可留出0.2mm间隙。(下壳板除外)
划槽线只留在一面即可( 用于调刀) 且最好为偶数便于调刀。
工艺边宽≥5mm。
铝板划槽的要保证划槽的两板在1mm以上。
常见元件封装命名规则
元件库中所有0402、 0603、 0805、 1206封装均采用IPC元件库中的封装, 其它为自建元件库。(注意公英制转换,常见的标准封装都已经收集了)
鉴于很多元件DATASHEET对于元件封装的命名不同, 导致整个PCB封装库没有一个命名标准,故整理一个常见元件封装标准出来,以供参考使用。 1、 电阻: A、 表贴标准电阻, 以SR+封装尺寸代号命名。 例6032: SR6032。 B、 插装标准电阻, 以AXIAL+封装尺寸代号命名。 例300MIL的插装电阻AXIAL0.3。 C、 电位器、 功率电阻根据具体封装结合DATASHEET来命名。 2、 电容: A、 表贴标准电阻, 以SC+封装尺寸代号命名。 例6032: SC6032。 B、 插装标准电阻: 轴向电容以RAD+封装尺寸代号命名。 例300MIL的插装电容RAD0.3 径向电容以RB+封装尺寸代号命名。 例400MIL的圆柱形电容RB.2.4 C、 其它电容根据具体封装结合DATASHEET来命名。 3、 双排表贴标准封装命名规则: SOP(引脚数)+脚间距+元件的宽度(同一水平位置PIN与PIN最大距离) 例0.5脚间距宽度400MIL的20引脚的元件 SOP20-50-400 4、 双排插装标准封装命名规则: (指DIP一类的,DIP24以后有300和600宽度两种。) A、 300MIL宽度的DIP命名 DIP+引脚数 例10脚DIP元件 DIP10 B、 600MIL宽度的DIP命名 DIP+引脚数+W 例24脚DIP元件 DIP24-W 5、 PLCC封装命名规则: PLCC+引脚数 6、 QFP一类封装命名规则: A、 四面引脚数目相同: QFP(引脚数)+脚间距+元件的宽度(同一水平位置PIN与PIN最大距离) B、 四面引脚数目不相同: QFP(引脚数)+脚间距+元件的宽度(同一水平位置PIN与PIN最大距离)+元件的高度 7、 BGA一类封装命名规则: BGA引脚数+节距+行数X列数 (如果行数与列数相同则只取行数) 8、 PGA与BGA相同。 9、 标准2.54间距单排插针封装命名规则: (丝印距焊盘中心为1.27) SIP+引脚数 10、 标准2.54间距单排插针封装命名规则: (丝印距焊盘中心为1.27) IDC+引脚数 11、 电感封装命名规则: 普通表贴L+封装尺寸代号命名。 例 L6032。 其它根据具体封装结合DATASHEET来命名。
其它封装命名根据实际情况结合DATASHEET或根据元件来命名。 例CF卡封装CF
1、 集成电路( 直插) :
用DIP-引脚数量+尾缀来表示双列直插封装
尾缀有N和W两种,用来表示器件的体宽
N为体窄的封装, 体宽300mil,引脚间距2.54mm
W为体宽的封装, 体宽600mil,引脚间距2.54mm
如: DIP-16N表示的是体宽300mil,引脚间距2.54mm的16引脚窄体双列直插封装
2 、 集成电路( 贴片) :
用SO-引脚数量+尾缀表示小外形贴片封装
尾缀有N、 M和W三种,用来表示器件的体宽
N为体窄的封装, 体宽150mil,引脚间距1.27mm
M为介于N和W之间的封装, 体宽208mil,引脚间距1.27mm
W为体宽的封装, 体宽300mil,引脚间距1.27mm
如: SO-16N表示的是体宽150mil, 引脚间距1.27mm的16引脚的小外形贴片封装
若SO前面跟M则表示为微形封装, 体宽118mil,引脚间距0.65mm
3、 电阻:
3.1 SMD贴片电阻命名方法为: 封装+R
如: 1812R表示封装大小为1812的电阻封装
3.2 碳膜电阻命名方法为: R-封装
如: R-AXIAL0.6表示焊盘间距为0.6英寸的电阻封装
3.3 水泥电阻命名方法为: R-型号
如: R-SQP5W表示功率为5W的水泥电阻封装
4、 电容:
4.1 无极性电容和钽电容命名方法为: 封装+C
如: 6032C表示封装为6032的电容封装
4.2 SMT独石电容命名方法为: RAD+引脚间距
如: RAD0.2表示的是引脚间距为200mil的SMT独石电容封装
4.3 电解电容命名方法为: RB+引脚间距/外径
如: RB.2/.4表示引脚间距为200mil, 外径为400mil的电解电容封装
5、 二极管整流器件:
命名方法按照元件实际封装, 其中BAT54和1N4148封装为1N4148
6 、 晶体管:
命名方法按照元件实际封装, 其中SOT-23Q封装的加了Q以区别集成电路的SOT-23封装, 另外几个场效应管为了调用元件不致出错用元件名作为封装名
7、 晶振:
HC-49S,HC-49U为表贴封装, AT26,AT38为圆柱封装, 数字表规格尺寸
如: AT26表示外径为2mm, 长度为8mm的圆柱封装
8、 电感、 变压器件:
电感封封装采用TDK公司封装
9、 光电器件:
9.1 贴片发光二极管命名方法为封装+D来表示
如: 0805D表示封装为0805的发光二极管
9.2 直插发光二极管表示为LED-外径
展开阅读全文