1、惯性导航技术综合实验实验五 惯性基组合导航及应用技术实验 惯性/卫星组合导航系统车载实验一、 实验目的掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; 掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理;掌握捷联惯导 /GPS组合导航系统静态性能;掌握动态情况下捷联惯导 /GPS组合导航系统的性能。二、实验内容复习卡尔曼滤波的基本原理(参考卡尔曼滤波与组合导航原理第二、五章); 复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的惯性导航原理第七章);三、实验系统组成捷联惯导/GPS组合导航实验系统一套; 监控计算机一台。差分 GPS接收机一套;实验车一辆;车载大理石平
2、台;车载电源系统。四、实验内容1) 实验准备 将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; 将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算机、GPS接收机与导航计算机、GPS天线与GPS接收机、GPS接收机与GPS电池之间的连接线正确连接; 打开GPS接收机电源,确认可以接收到4颗以上卫星; 打开电源,启动实验系统。2) 捷联惯导/GPS组合导航实验 进入捷联惯导初始对准状态,记录IMU的原始输出,注意5分钟内严禁移动实验车和IMU; 实验系统经过5分钟初始对准之后,进入导航状态; 移动实验车,按设计实验路线行驶; 利用监控计算机中的导航软件进行导
3、航解算,并显示导航结果。五、 实验结果及分析(一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。1、一分钟惯导位置误差理论推导:短时段内(t5min),忽略地球自转,运动轨迹近似为平面,此时的位置误差分析可简化为:(1) 加速度计零偏引起的位置误差:m(2) 失准角引起的误差:m(3) 陀螺漂移引起的误差:m可得1min后的位置误差值2、一分钟惯导实验数据验证结果:(1)纯惯导解算1min的位置及位置误差图:(2)纯惯导解算1min的速度及速度误差图:实验结果分析:纯惯导解算短时间内精度很高,1min的惯导解算的北向最大位移误差-2.668m,东向最大位移误差-8.2
4、31m,可见实验数据所得位置误差与理论推导的位置误差在同一数量级,结果不完全相同是因为理论推导时做了大量简化,而且实验时视GPS为真实值也会带来误差;另外,可见1min内纯惯导解算的东向速度最大误差-0.2754m/s,北向速度最大误差-0.08027m/s。(二) 选取IMU前5分钟数据进行对准实验。将初始对准结果作为初值完成1小时捷联惯导和组合导航解算,对比1小时捷联惯导和组合导航结果。1、5minIMU数据的解析粗对准结果:2、5minIMU数据的Kalman滤波精对准结果:3、一小时IMU/GPS数据的组合导航结果图及估计方差P阵图:4、一小时IMU数据的捷联惯导解算结果与组合滤波、G
5、PS输出对比图:5、结果分析:由滤波结果图可以看出:(1) 由组合后的速度、位置的P阵可以看出滤波之后载体的速度和位置比GPS输出的精度高。(2) 短时间内SINS的精度较高,初始阶段的导航结果基本和GPS、组合导航结果重合,1小时后的捷联惯导解算结果很差,纬度、经度、高度均发散。(3) INS/GPS组合滤波的结果和GPS的输出结果十分近似,因为1小时的导航GPS的精度比SINS导航的精度高很多,Kalman滤波器中GPS信号的权重更大。(4) 总体看来,SINS/GPS组合滤波的结果优于单独用SINS或GPS导航的结果,起到了协调、超越、冗余的作用,使导航系统更可靠。六、 SINS/GPS
6、组合导航程序%INS/GPS组合导航跑车1h实验%该程序为15维状态量,6维观测量的kalman滤波程序,惯性/卫星组合松耦合的数学模型clearclcclose all%初始量定义wie = 0.000072921151467; Re= 6378135.072;g = 9.7803267714;e = 1.0 / 298.25;T = 0.01; %IMU频率100hz,此程序中GPS频率100hzdatanumber = 360000; %数据时间3600s a = load(imu_1h.dat);w = a(:,3:5)*pi/180/3600; %陀螺仪输出的角速率信息单位由/h化为
7、rad/sf = a(:,6:8); %三轴比力输出,单位ga = load(gps_1h_new.dat); gps_pos = a(:,3:5); %GPS输出的纬度、经度、高度信息gps_pos(:,1:2) = gps_pos(:,1:2)*pi/180; %纬经单位化为弧度gps_v = a(:,6:8); %GPS输出的东北天速度信息%捷联解算及卡尔曼相关v=zeros(datanumber,3); %组合后的速度信息atti = zeros(datanumber,3); %组合后的姿态信息pos = zeros(datanumber,3); %组合后的位置信息gyro=zeros
8、(3,1);acc=zeros(3,1);x_kf = zeros(datanumber,15); p_kf = zeros(datanumber,15);lat = 40.0211142228246*pi/180; %组合导航的初始位置、姿态、速度lon =116.3703629769560*pi/180;height =43.0674;fai = 219.9744642380873*pi/180;theta = -0.895865732956914*pi/180;gama = 0.640089448357591*pi/180;Vx=gps_v(1,1);Vy=gps_v(1,2);Vz=g
9、ps_v(1,3);X_o=zeros(15,1); %X的初值选为0X=zeros(15,1); %Q=diag(50e-6*g)2,(50e-6*g)2,(50e-6*g)2,(0.1*pi/180/3600)2,(0.1*pi/180/3600)2,(0.1*pi/180/3600)2,0,0,0,0,0,0,0,0,0); %随机Q=diag(0.008*pi/180/3600)2,(0.008*pi/180/3600)2,(0.008*pi/180/3600)2,(50e-6*g)2,(50e-6*g)2,(50e-6*g)2,0,0,0,0,0,0,0,0,0);R=diag(0.
10、01)2,(0.01)2,(0.01)2,(0.1)2,(0.1)2,(0.15)2); P=zeros(15);P_k=diag(0.00005*pi/180)2,(0.00005*pi/180)2,(0.00005*pi/180)2,0.000052,0.000052,0.000052,22,22,22,(0.001*pi/180/3600)2,(0.001*pi/180/3600)2,(0.001*pi/180/3600)2,(50e-6*g)2,(50e-6*g)2,(50e-6*g)2); %K=zeros(15,6);Z=zeros(6,1);I=eye(15);Cnb = cos
11、(gama)*cos(fai)-sin(gama)*sin(theta)*sin(fai), cos(gama)*sin(fai)+sin(gama)*sin(theta)*cos(fai), -sin(gama)*cos(theta); -cos(theta)*sin(fai), cos(theta)*cos(fai), sin(theta); sin(gama)*cos(fai)+cos(gama)*sin(theta)*sin(fai), sin(gama)*sin(fai)-cos(gama)*sin(theta)*cos(fai), cos(gama) * cos(theta);q
12、= cos(fai/2)*cos(theta/2)*cos(gama/2) - sin(fai/2)*sin(theta/2)*sin(gama/2); cos(fai/2)*sin(theta/2)*cos(gama/2) - sin(fai/2)*cos(theta/2)*sin(gama/2); cos(fai/2)*cos(theta/2)*sin(gama/2) + sin(fai/2)*sin(theta/2)*cos(gama/2); cos(fai/2)*sin(theta/2)*sin(gama/2) + sin(fai/2)*cos(theta/2)*cos(gama/2)
13、;Cnb_s=Cnb;q_s=q; for i=1:1:datanumber Rmh = Re * (1.0 - 2.0 * e + 3.0 * e * sin(lat) * sin(lat) + height; Rnh = Re * (1.0 + e * sin(lat) * sin(lat) + height; Wien = 0; wie * cos(lat); wie * sin(lat); Wenn = -Vy / Rmh; Vx / Rnh; Vx * tan(lat) / Rnh; Winn = Wien + Wenn; Winb = Cnb * Winn; for j=1:3 g
14、yro(j,1) = w(j,i); acc(j,1) = f(j,i)*g; %加速度信息,单位化为m/s2 end angle = (gyro - Winb) * T; fn = Cnb* acc; difVx = fn(1) + (2.0 * wie * sin(lat) + Vx * tan(lat) / Rnh) * Vy; difVy = fn(2) - (2.0 * wie * sin(lat) + Vx * tan(lat) / Rnh) * Vx; difVz = fn(3) + (2.0 * wie * cos(lat) + Vx / Rnh) * Vx + Vy * Vy
15、 / Rmh -g; Vx = difVx * T + Vx; Vy = difVy * T + Vy; Vz = difVz * T + Vz; lat = lat + Vy * T / Rmh;lon = lon + Vx * T / Rnh / cos(lat); height = height + Vz * T; M = 0, -angle(1), -angle(2), -angle(3); angle(1), 0, angle(3), -angle(2); angle(2), -angle(3), 0, angle(1); angle(3), angle(2), -angle(1),
16、 0; q = (cos(norm(angle) / 2) * eye(4) + sin(norm(angle) / 2) / norm(angle) * M) * q; q = q / norm(q);Cnb = q(1)*q(1)+q(2)*q(2)-q(3)*q(3)-q(4)*q(4), 2*(q(2)*q(3)+q(1)*q(4), 2*(q(2)*q(4)-q(1)*q(3); 2*(q(2)*q(3)-q(1)*q(4), q(1)*q(1)-q(2)*q(2)+q(3)*q(3)-q(4)*q(4), 2*(q(3)*q(4)+q(1)*q(2); 2*(q(2)*q(4)+q
17、(1)*q(3), 2*(q(3)*q(4)-q(1)*q(2), q(1)*q(1)-q(2)*q(2)-q(3)*q(3)+q(4)*q(4); Rmh = Re * (1.0 - 2.0 * e + 3.0 * e * sin(lat) * sin(lat) + height; Rnh = Re * (1.0 + e * sin(lat) * sin(lat) + height; %以上为纯惯导解算 % F1=0 wie*sin(lat)+v(i,1)*tan(lat)/(Rnh) -(wie*cos(lat)+v(i,1)/(Rnh) 0 -1/(Rmh) 0 0 0 0; -(wie
18、*sin(lat)+v(i,1)*tan(lat)/(Rnh) 0 -v(i,2)/(Rmh) 1/(Rnh) 0 0 -wie*sin(lat) 0 0; wie*cos(lat)+v(i,1)/(Rnh) v(i,2)/(Rmh) 0 tan(lat)/(Rnh) 0 0 wie*cos(lat)+v(i,2)*sec(lat)*sec(lat)/(Rnh) 0 0; 0 -fn(3) fn(2) v(i,2)*tan(lat)/(Rmh)-v(i,3)/(Rmh) 2*wie*sin(lat)+v(i,1)*tan(lat)/(Rnh) -(2*wie*cos(lat)+v(i,1)/(
19、Rnh) (2*wie*cos(lat)*v(i,2)+v(i,1)*v(i,2)*sec(lat)*sec(lat)/(Rnh)+2*wie*sin(lat)*v(i,3) 0 0; fn(3) 0 -fn(1) -2*(wie*sin(lat)+v(i,1)*tan(lat)/(Rnh) -v(i,3)/(Rmh) -v(i,2)/(Rmh) -(2*wie*cos(lat)+v(i,1)*sec(lat)*sec(lat)/(Rnh)*v(i,1) 0 0; -fn(2) fn(1) 0 2*(wie*cos(lat)+v(i,1)/(Rnh) 2*v(i,2)/(Rmh) 0 -2*w
20、ie*sin(lat)*v(i,1) 0 0; 0 0 0 0 1/(Rmh) 0 0 0 0; 0 0 0 sec(lat)/(Rnh) 0 0 v(i,1)*sec(lat)*tan(lat)/(Rnh) 0 0; 0 0 0 0 0 1 0 0 0 ; G=Cnb,zeros(3); zeros(3),Cnb; zeros(9,6); H=zeros(3),eye(3),zeros(3),zeros(3,6); zeros(3),zeros(3),diag(Rmh,Rnh*cos(lat),1),zeros(3,6); %量测阵 F2=-Cnb,zeros(3); zeros(3),Cn
21、b; zeros(3),zeros(3); F=F1,F2; zeros(6,15); %以上为kalman滤波模型参数 F = F * T; %离散化 temp1 = eye(15); disF = eye(15); for j = 1:10 temp1 = F * temp1 / j; disF = disF + temp1; end temp1 = Q * T; disQ = temp1; for j = 2:11 temp2 = F * temp1; temp1 = (temp2 + temp2)/j; disQ = disQ + temp1; end Z(1) = Vx - gps_
22、v(i,1); %量测量为纯惯导与GPS的速度差、位置差 Z(2) = Vy - gps_v(i,2); Z(3) = Vz - gps_v(i,3); Z(4) = (lat - gps_pos(i,1) * Rmh; %纬经度化为位移,单位m Z(5) = (lon - gps_pos(i,2) * Rnh * cos(lat); Z(6) = height - gps_pos(i,3); X = disF * X_o; %kalman滤波五个公式 P = disF * P_k * disF+ disQ; K = P * H/( H * P * H+ R); X_k = X + K * (
23、Z - H * X); P_k = (I - K * H) * P; x_kf(i,1) = X_k(1)/pi*180; %平台误差角 x_kf(i,2) = X_k(2)/pi*180; x_kf(i,3) = X_k(3)/pi*180; x_kf(i,4) = X_k(4); %速度误差 x_kf(i,5) = X_k(5); x_kf(i,6) = X_k(6); x_kf(i,7) = X_k(7); %位置误差 x_kf(i,8) = X_k(8); x_kf(i,9) = X_k(9); x_kf(i,10) = X_k(10)/pi*180*3600; %陀螺随机常值漂移,单
24、位/h x_kf(i,11) = X_k(11)/pi*180*3600; x_kf(i,12) = X_k(12)/pi*180*3600; x_kf(i,13) = X_k(13)*106/g; %加计随机常值偏置,单位ug x_kf(i,14) = X_k(14)*106/g; x_kf(i,15) = X_k(15)*106/g; p_kf(i,1) = sqrt(abs(P_k(1,1)/pi*180; p_kf(i,2) = sqrt(abs(P_k(2,2)/pi*180; p_kf(i,3) = sqrt(abs(P_k(3,3)/pi*180; p_kf(i,4) = sqr
25、t(abs(P_k(4,4); p_kf(i,5) = sqrt(abs(P_k(5,5); p_kf(i,6) = sqrt(abs(P_k(6,6); p_kf(i,7) = sqrt(abs(P_k(7,7); p_kf(i,8) = sqrt(abs(P_k(8,8); p_kf(i,9) = sqrt(abs(P_k(9,9); p_kf(i,10) = sqrt(abs(P_k(10,10)/pi*180*3600; p_kf(i,11) = sqrt(abs(P_k(11,11)/pi*180*3600; p_kf(i,12) = sqrt(abs(P_k(12,12)/pi*1
26、80*3600; p_kf(i,13) = sqrt(abs(P_k(13,13)*106/g; p_kf(i,14) = sqrt(abs(P_k(14,14)*106/g; p_kf(i,15) = sqrt(abs(P_k(15,15)*106/g; Vx = Vx - X_k(4); %速度校正 Vy = Vy - X_k(5); Vz = Vz - X_k(6); v(i,:) = Vx, Vy, Vz; lat = lat - X_k(7); %位置校正 lon = lon - X_k(8); height = height - X_k(9); pos(i,:) = lat, lo
27、n, height; Atheta = X_k(1); %kalman滤波估计得出的失准角theta Agama = X_k(2); %kalman滤波估计得出的失准角gama Afai = X_k(3); %kalman滤波估计得出的失准角fai Ctn = 1, Afai, -Agama; -Afai, 1, Atheta; Agama, -Atheta, 1; Cnb = Cnb*Ctn; %更新姿态阵 fai= atan(-Cnb(2,1) / Cnb(2,2);theta = asin(Cnb(2,3);gama = atan(-Cnb(1,3) / Cnb(3,3); if (Cn
28、b(2,2) 0) fai = fai + pi; elseif (fai 0) fai = fai + 2*pi; end if (Cnb(3,3) 0) gama = gama - pi; else gama = gama + pi; end end atti(i,:) = fai/pi*180, theta/pi*180, gama/pi*180; q(2) = sqrt(abs(1 + Cnb(1,1) - Cnb(2,2) - Cnb(3,3) / 2; q(3) = sqrt(abs(1 - Cnb(1,1) + Cnb(2,2) - Cnb(3,3) / 2; q(4) = sq
29、rt(abs(1 - Cnb(1,1) - Cnb(2,2) + Cnb(3,3) / 2; q(1) = sqrt(abs(1 - q(2) * q(2) - q(3) * q(3) - q(4) * q(4); if (Cnb(2,3) Cnb(3,2) q(2) = - q(2); end if (Cnb(3,1) Cnb(1,3) q(3) = - q(3); end if (Cnb(1,2) Cnb(2,1) q(4) = - q(4); end X_k(1:9) = 0; X_o=X_k; iend%绘图%t=1:datanumber;figure(1)subplot(311);p
30、lot(t,pos(:,1)*180/pi,r,t,gps_pos(:,1)*180/pi,b)title(纬度);xlabel(0.01s);ylabel();subplot(312);plot(t,pos(:,2)*180/pi,r,t,gps_pos(:,2)*180/pi,b)title(经度);xlabel(0.01s);ylabel();subplot(313);plot(t,pos(:,3),r,t,gps_pos(:,3),b)title(高度);xlabel(0.01s);ylabel(m);legend(组合滤波,GPS)figure(2)subplot(311);plot
31、(t,v(:,1),r,t,gps_v(:,1),b)title(东向速度);xlabel(0.01s);ylabel(m/s);subplot(312);plot(t,v(:,2),r,t,gps_v(:,2),b)title(北向速度);xlabel(0.01s);ylabel(m/s);subplot(313);plot(t,v(:,3),r,t,gps_v(:,3),b)title(天向速度);xlabel(0.01s);ylabel(m/s);legend(组合滤波,GPS)figure(3)subplot(311);plot(t,atti(:,1)title(航向角);xlabel
32、(0.01s);ylabel();subplot(312);plot(t,atti(:,2)title(俯仰角);xlabel(0.01s);ylabel();subplot(313);plot(t,atti(:,3)title(横滚角);xlabel(0.01s);ylabel();figure(4)subplot(311);plot(t,p_kf(:,1)title(P航向角误差);xlabel(0.01s);ylabel(度);subplot(312);plot(t,p_kf(:,2)title(P俯仰角误差);xlabel(0.01s);ylabel(度);subplot(313);p
33、lot(t,p_kf(:,3)title(P横滚角误差);xlabel(0.01s);ylabel(度);figure(5)subplot(311);plot(t,p_kf(:,4)title(P东向速度误差);xlabel(0.01s);ylabel(m/s);subplot(312);plot(t,p_kf(:,5)title(P北向速度误差);xlabel(0.01s);ylabel(m/s);subplot(313);plot(t,p_kf(:,6)title(P天向速度误差);xlabel(0.01s);ylabel(m/s);figure(6)subplot(311);plot(t
34、,p_kf(:,7)title(P纬度误差);xlabel(0.01s);ylabel(度);subplot(312);plot(t,p_kf(:,8)title(P经度误差);xlabel(0.01s);ylabel(度);subplot(313);plot(t,p_kf(:,9)title(P高度误差);xlabel(0.01s);ylabel(m);figure(7)subplot(311);plot(t,p_kf(:,10)title(P东向陀螺);xlabel(0.01s);ylabel(度/小时);subplot(312);plot(t,p_kf(:,11)title(P北向陀螺)
35、;xlabel(0.01s);ylabel(度/小时);subplot(313);plot(t,p_kf(:,12)title(P天向陀螺);xlabel(0.01s);ylabel(度/小时);figure(8)subplot(311);plot(t,p_kf(:,13)title(P东向加计);xlabel(0.01s);ylabel(ug);subplot(312);plot(t,p_kf(:,14)title(P北向加计);xlabel(0.01s);ylabel(ug);subplot(313);plot(t,p_kf(:,15)title(P天向加计);xlabel(0.01s);ylabel(ug);