收藏 分销(赏)

永州市七年级数学下册期末压轴题考试题及答案.doc

上传人:w****g 文档编号:5547558 上传时间:2024-11-13 格式:DOC 页数:47 大小:1.80MB 下载积分:12 金币
下载 相关 举报
永州市七年级数学下册期末压轴题考试题及答案.doc_第1页
第1页 / 共47页
永州市七年级数学下册期末压轴题考试题及答案.doc_第2页
第2页 / 共47页


点击查看更多>>
资源描述
一、解答题 1.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且 (1)求; (2)若为直线上一点. ①的面积不大于面积的,求P点横坐标x的取值范围; ②请直接写出用含x的式子表示y. (3)已知点,若的面积为6,请直接写出m的值. 2.问题情境: (1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答. 问题迁移: (2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由; (3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明. 3.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 4.综合与实践 背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础. 已知:AM∥CN,点B为平面内一点,AB⊥BC于B. 问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= . 5.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0 (1)α=  ,β=  ;直线AB与CD的位置关系是   ; (2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论; (3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由. 6.已知,AB∥CD,点E为射线FG上一点. (1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED=   . (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论; (3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数. 7.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …… 在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25; (2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b的式子表示这类“数字对称等式”的规律是_______. 8.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A、B两点表示的数分别为___________,____________; (2)请你参照上面的方法: ①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙) ②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长) 9.新定义:对非负数x“四舍五入”到个位的值记为<x>, 即当n为非负数时,若,则<x>=n. 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,… 试回答下列问题: (1)填空:<9.6>=_________;如果<x>=2,实数x的取值范围是________________. (2)若关于x的不等式组的整数解恰有4个,求<m>的值; (3)求满足的所有非负实数x的值. 10.阅读下列材料:小明为了计算的值,采用以下方法: 设 ① 则 ② ②-①得, 请仿照小明的方法解决以下问题: (1)________; (2)_________; (3)求的和(,是正整数,请写出计算过程). 11.观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”. (1)数对中是“白马有理数对”的是_________; (2)若是“白马有理数对”,求的值; (3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复) 12.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则. 例如:,. (1)计算: ; ; (2)①求满足的实数的取值范围, ②求满足的所有非负实数的值; (3)若关于的方程有正整数解,求非负实数的取值范围. 13.如图1在平面直角坐标系中,大正方形OABC的边长为m厘米,小正方形ODEF的边长为n厘米,且|m﹣4|+=0. (1)求点B、点D的坐标. (2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x轴向右平移,如图2.设平移的时间为t秒,在平移过程中两个正方形重叠部分的面积为S平方厘米. ①当t=1.5时,S=   平方厘米; ②在2≤t≤4这段时间内,小正方形的一条对角线扫过的图形的面积为   平方厘米; ③在小正方形平移过程中,若S=2,则小正方形平移的时间t为   秒. (3)将大正方形固定不动,小正方形从图1中起始状态沿x轴向右平移,在平移过程中,连接AD,过D点作DM⊥AD交直线BC于M,∠DAx的角平分线所在直线和∠CMD的角平分线所在直线交于N(不考虑N点与A点重合的情形),求∠ANM的大小并说明理由. 14.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 15.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6. (1)直接写出点C的坐标. (2)在y轴上是否存在点P,使得S△POB=S△ABC若存在,求出点P的坐标;若不存在,请说明理由. (3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论. 16.请阅读求绝对值不等式和的解的过程. 对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对值小于,所以的解为; 对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或. (1)求绝对值不等式的解 (2)已知绝对值不等式的解为,求的值 (3)已知关于,的二元一次方程组的解满足,其中是负整数,求的值. 17.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足. (1)直接写出点,点的坐标; (2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由; (3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论. 18.如图所示,在直角坐标系中,已知,,将线段平移至,连接、、、,且,点在轴上移动(不与点、重合). (1)直接写出点的坐标; (2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由; (3)点在运动过程中,请写出、、三者之间存在怎样的数量关系,并说明理由. 19.如图,学校印刷厂与A,D两地有公路、铁路相连,从A地购进一批每吨8000元的白纸,制成每吨10000元的作业本运到D地批发,已知公路运价1.5元/(t•km),铁路运价1.2元/(t•km).这两次运输支出公路运费4200元,铁路运费26280元. (1)白纸和作业本各多少吨? (2)这批作业本的销售款比白纸的购进款与运输费的和多多少元? 20.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米? 21.新定义,若关于,的二元一次方程组①的解是,关于,的二元一次方程组②的解是,且满足,,则称方程组②的解是方程组①的模糊解.关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是________. 22.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器, (1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个? (2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则的值可能是( ) A.2019 B.2020 C.2021 D.2022 (3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒? 23.如图,在平面直角坐标系中,已知,点,,,,,满足, (1)直接写出点,,的坐标及的面积; (2)如图2,过点作直线,已知是上的一点,且,求的取值范围; (3)如图3,是线段上一点, ①求,之间的关系; ②点为点关于轴的对称点,已知,求点的坐标. 24.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子. (1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个? (2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个? (3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个? 25.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖. (1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少? (2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒? 26.阅读理解: 例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2. 例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3. 参考阅读材料,解答下列问题: (1)方程|x﹣2|=3的解为    ; (2)解不等式:|x﹣2|≤1. (3)解不等式:|x﹣4|+|x+2|>8. (4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围. 27.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”. 例:已知方程2x﹣3=1与不等式x+3>0,当x=2时,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同时成立,则称x=2是方程2x﹣3=1与不等式x+3>0的“理想解”. (1)已知①,②2(x+3)<4,③<3,试判断方程2x+3=1的解是否是它们中某个不等式的“理想解”,写出过程; (2)若是方程x﹣2y=4与不等式的“理想解”,求x0+2y0的取值范围. 28.阅读下列材料: 问题:已知x﹣y=2,且x>1,y<0 解:∵x﹣y=2.∴x=y+2, 又∵x>1∴y+2>1 ∴y>﹣1 又∵y<0 ∴﹣1<y<0① ∴﹣1+2<y+2<0+2 即1<x<2② ①+②得﹣1+1<x+y<0+2 ∴x+y的取值范围是0<x+y<2 请按照上述方法,完成下列问题: (1)已知x﹣y=3,且x>﹣1,y<0,则x的取值范围是   ;x+y的取值范围是    ; (2)已知x﹣y=a,且x<﹣b,y>2b,根据上述做法得到-2<3x-y<10,求a、b的值. 29.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0. (1)a=___,b=___,△BCD的面积为______; (2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC; (3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由. 30.规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知,则是隐线的亮点的是 ; (2) 设是隐线的两个亮点,求方程中的最小的正整数解; (3)已知是实数, 且,若是隐线的一个亮点,求隐线中的最大值和最小值的和. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)4;(2)①或;②;(3)或. 【分析】 (1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得; (2)①分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得; ②分和两种情况,利用、和的面积关系建立等式,化简即可得; (3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得. 【详解】 解:(1)由题意得:, 解得, , , 轴轴, ; (2)①的面积不大于面积的, 的面积小于的面积, 则分以下两种情况: 如图,当时, 则,, 因此有, 解得, 此时的取值范围为; 如图,当时, 则,, 因此有, 解得, 此时的取值范围为, 综上,点横坐标的取值范围为或; ②当时,则,, 由(2)①可知,, 则, 即; 如图,当时,则, ,, , , 解得, 综上,; (3)过点作轴的平行线,交直线于点, 由(2)②可知,, 则, 由题意,分以下三种情况: ①如图,当时, 则, , 解得,不符题设,舍去; ②如图,当时, 则, , 解得或(不符题设,舍去); ③如图,当时, 则, , 解得,符合题设, 综上,的值为或. 【点睛】 本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键. 2.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】 (1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°; (2)过过作交于,,推出,根据平行线的性质得出,即可得出答案; (3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案. 【详解】 解:(1)过作, , , ,, , ,, ; (2),理由如下: 如图3,过作交于, , , ,, ,, 又 ; (3)①当在延长线时(点不与点重合),; 理由:如图4,过作交于, , , ,, ,, , 又, ; ②当在之间时(点不与点,重合),. 理由:如图5,过作交于, , , ,, ,, , 又 . 【点睛】 本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角. 3.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 4.(1);(2)见解析;(3)105° 【分析】 (1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B作BG∥DM,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】 解:(1)如图1,设AM与BC交于点O,∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠ABC=90°, ∴∠A+∠AOB=90°, ∠A+∠C=90°, 故答案为:∠A+∠C=90°; (2)证明:如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 故答案为:105°. 【点睛】 本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键. 5.(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得. 【详解】 解:(1), ,, , ,, , ; 故答案为:20、20,; (2); 理由:由(1)得, , , , , , , ; (3)的值不变,; 理由:如图3中,作的平分线交的延长线于, , , ,, , , , 设,, 则有:, 可得, , . 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 6.(1)70°;(2),证明见解析;(3)122° 【分析】 (1)过作,根据平行线的性质得到,,即可求得; (2)过过作,根据平行线的性质得到,,即; (3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求. 【详解】 解:(1)过作, , , ,, , 故答案为:; (2). 理由如下: 过作, , , ,, ,, ; (3), 设,则, ,, 又,, , 平分, , , , 即,解得, , . 【点睛】 本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 7.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a]. 【分析】 (1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可; (2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可. 【详解】 解:(1)∵5+2=7, ∴左边的三位数是275,右边的三位数是572, ∴52×275=572×25, (2)左边的两位数是10b+a,三位数是100a+10(a+b)+b; 右边的两位数是10a+b,三位数是100b+10(a+b)+a; “数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a]. 故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a]. 【点睛】 本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键. 8.(1),;(2)①图见解析,;②见解析 【分析】 (1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数 (2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N. 【详解】 (1)由图1知,小正方形的对角线长是, ∴图2中点A表示的数是,点B表示的数是, 故答案是:,; (2)①长方形的面积是5,拼成的正方形的面积也应该是5, ∴正方形的边长是, 如图所示: 故答案是:; ②如图所示: 【点睛】 本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解. 9.(1)10;(2)(3):0,1,2 【详解】 分析:(1)①利用对非负数x“四舍五入”到个位的值为<x>,进而求解即可; (2)首先将<m>看做一个字母,解不等式,进而根据整数解的个数得出m的取值; (3)利用得出关于x的不等式,求解即可. 详解:(1)①10,②; (2)解不等式组得: 由不等式组的整数解恰有4个得,, ∴; (3)∵, ∴,, ∴, ∵x为非负整数, ∴x的值为:0,1,(2) 点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解. 10.(1);(2);(3) 【分析】 (1)设式子等于s,将方程两边都乘以2后进行计算即可; (2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s,将方程两边都乘以a后进行计算即可. 【详解】 (1)设s=①, ∴2s=②, ②-①得:s=, 故答案为:; (2)设s=①, ∴3s=②, ②-①得:2s=, ∴, 故答案为: ; (3)设s=①, ∴as=②, ②-①得:(a-1)s=, ∴s=. 【点睛】 此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键. 11.(1);(2)2;(3)不是;(4)(6,) 【分析】 (1)根据“白马有理数对”的定义,把数对分别代入计算即可判断; (2)根据“白马有理数对”的定义,构建方程即可解决问题; (3)根据“白马有理数对”的定义即可判断; (4)根据“白马有理数对”的定义即可解决问题. 【详解】 (1)∵-2+1=-1,而-2×1-1=-3, ∴-2+1-3, ∴(-2,1)不是“白马有理数对”, ∵5+=,5×-1=, ∴5+=5×-1, ∴是“白马有理数对”, 故答案为:; (2)若是“白马有理数对”,则 a+3=3a-1, 解得:a=2, 故答案为:2; (3)若是“白马有理数对”,则m+n=mn-1, 那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1, ∵-mn+1 mn-1 ∴(-n,-m)不是“白马有理数对”, 故答案为:不是; (4)取m=6,则6+x=6x-1, ∴x=, ∴(6,)是“白马有理数对”, 故答案为:(6,). 【点睛】 本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键. 12.(1)2,3 (2)①② (3) 【分析】 (1)根据新定义的运算规则进行计算即可; (2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值; (3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围. 【详解】 (1)2;3; (2)①∵ ∴ 解得; ②∵ ∴ 解得 ∵为整数 ∴ 故所有非负实数的值有; (3) ∵方程的解为正整数 ∴或2 ①当时,是方程的增根,舍去 ②当时,. 【点睛】 本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键. 13.(1);(2)①3,②4,③1或5;(3),理由见解析 【分析】 (1)由非负性的性质以及算数平方根的性质可得出的值,可答案可求出; (2)①1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积; ②画出图形,计算所得图形面积即可; ③小正方形的高不变,根据面积即可求出小正方形平移的距离和时间; (3)过作轴,过作轴,设,则,得出,得出,得出, . 【详解】 解(1), , ; (2)①当秒时,小正方形向右移动1.5厘米, (平方厘米); ②如图1所示,小正方形的一条对角线扫过的面积为红色平行四边形, 面积为:(平方厘米); ③如图2,小正方形平移距离为(厘米), 小正方形平移的距离为1厘米或5厘米, 或, 综上所述,小正方形平移的时间为1或5秒; (3)如图3,过作轴,过作轴, 平分, 设, 则, , , , 平分, , . 【点睛】 本题考查了非负数的性质、坐标与图形的性质、平移的性质、平行线的性质、角平分线的性质、解题的关键是熟练掌握平行线的性质及平移的性质. 14.(1)见解析;(2)见解析;(3)40° 【分析】 (1)根据平行线的性质和判定解答即可; (2)过点H作HP∥AB,根据平行线的性质解答即可; (3)过点H作HP∥AB,根据平行线的性质解答即可. 【详解】 证明:(1)∵AB∥CD, ∴∠AFE=∠FED, ∵∠AGH=∠FED, ∴∠AFE=∠AGH, ∴EF∥GH, ∴∠FEH+∠H=180°, ∵FE⊥HE, ∴∠FEH=90°, ∴∠H=180°﹣∠FEH=90°, ∴HG⊥HE; (2)过点M作MQ∥AB, ∵AB∥CD, ∴MQ∥CD, 过点H作HP∥AB, ∵AB∥CD, ∴HP∥CD, ∵GM平分∠HGB, ∴∠BGM=∠HGM=∠BGH, ∵EM平分∠HED, ∴∠HEM=∠DEM=∠HED, ∵MQ∥AB, ∴∠BGM=∠GMQ, ∵MQ∥CD, ∴∠QME=∠MED, ∴∠GME=∠GMQ+∠QME=∠BGM+∠MED, ∵HP∥AB, ∴∠BGH=∠GHP=2∠BGM, ∵HP∥CD, ∴∠PHE=∠HED=2∠MED, ∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED), ∴∠GHE=∠2GME; (3)过点M作MQ∥AB,过点H作HP∥AB, 由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x, 由(2)可知:∠BGH=2∠MGH=10x, ∵∠AFE+∠BFE=180°, ∴∠AFE=180°﹣10x, ∵FK平分∠AFE, ∴∠AFK=∠KFE= ∠AFE, 即, 解得:x=5°, ∴∠BGH=10x=50°, ∵HP∥AB,HP∥CD, ∴∠BGH=∠GHP=50°,∠PHE=∠HED, ∵∠GHE=90°, ∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°, ∴∠HED=40°. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键. 15.(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明见解析. 【分析】 (1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案; (2)先求出S△ABC=9,S△BOP=OP,再根据S△POB=S△ABC,可得OP=6,即可写出点P的坐标; (3)先得到点H的坐标,再结合点B的坐标可得到BH//AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得. 【详解】 (1)∵A(4,0), ∴OA=4, ∵C点x轴负半轴上,AC=6, ∴OC=AC-OA=2, ∴C(-2,0); (2)∵B(2,3), ∴S△ABC=×6×3=9,S△BOP=OP×2=OP, 又∵S△POB=S△ABC, ∴OP=×9=6, ∴点P坐标为(0,6)或(0,-6); (3)∠BMA=∠MAC±∠HBM,证明如下: ∵把点C往上平移3个单位得到点H,C(-2,0), ∴H(-2,3), 又∵B(2,3), ∴BH//AC; 如图1,当点M在线段HC上时,过点M作MN//AC, ∴∠MAC=∠AMN,MN//HB, ∴∠HBM=∠BMN, ∵∠BMA=∠BMN+∠AMN, ∴∠BMA=∠HBM+∠MAC; 如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC, ∴∠MAC=∠AMN,MN//HB, ∴∠HBM=∠BMN, ∵∠BMA=∠AMN-∠BMN, ∴∠BMA=∠MAC-∠HBM; 综上,∠BMA=∠MAC±∠HBM. 【点睛】 本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键. 16.(1)x>5或x<1;(2)9;(3)m=-3或m=-2或m=-1 【分析】 (1)由绝对值的几何意义即可得出答案; (2)由知,据此得出,再结合可得出关于、的方程组,解之即可求出、的值,从而得出答案; (3)两个方程相加化简得出,由知,据此得出,解之求出的取值范围,继而可得答案. 【详解】 解:(1)根据绝对值的定义得:或, 解得或; (2), , 解得, 解集为, , 解得, 则; (3)两个方程相加,得:, , , , , 解得,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服