1、实验报告实验工作者:杜华 学号:201206020108 实验日期:2014年3月31号实验名称:实验一: 生产过程监控图的编制实验目的:本实验通过对某化工厂正常生产过程中120次Hgcl2浓度的测定数据。编制对生产过程中Hgcl2浓度的监控图,以保证最终产品质量。通过本实验,让同学们一起理解误差的理论与意义,学会编制生产过程监控图的方法实验原理:一般情况下,很多工程测量与生产过程的参数值都是服从正态分布的随机变量,例如利用正常电子仪器在相同条件下对同一物理量重复测量所获得的数据;化工生产过程中正常的浓度、温度值等等。因此,我们可以依据服从正态分布的随机变量所具有特征,来实现对这些测量值、或生
2、产过程中的参数值“是否正常”的判断。这就是我们建立监控图的基本思想。从这个意义上说,已经建立的监控图实际是一把尺子,我们可以用它来度量每一个测量数据或生产参数是否正常。根据正态分布理论,正常的测量值或生产过程中的参数值落入平均值加减一倍,两倍,三倍均方差区间的理论概率值应该分别等于68.26%,95.44%,99.73%;当我们只进行有限次测量时,获取数据如果是正常的,超出平均值加减三倍均方差的区间可能性几乎是0。因此,一旦检测数据超过平均值加减三倍均方差区间,我们就可以判定,其为不正常数据,预示着生产过程出了问题,需进行调整从而实现监控目的实验设备:按有excel软件的电脑实验步骤:1 依据
3、5.1.1所测量数据,统计平均值和标准差;统计量数据个数平均值标准差备注Hgcl2的浓度1200.800.045剔除前的数据统计量数据个数平均值标准差备注Hgcl2的浓度1170.800.038剔除后的数据2.按平均值加减一倍,两倍,三倍标准差编制质量监控图;3将5.1.2监测数据标绘在所编监控图上:4. 分析6.16.11时间段中生产过程是否正常。按三倍标准差理论,上午有五个数据不正常,它们分别是0.64,0.65,0.94,0.98 ,0.99下午有两个数据部正常,它们分别是0.98 ,0.99表5.1.1 对HgCl2(g/L)浓度120次重复测量结果 实验数据表5.1.2 某化工产XX
4、XX年6月1日至11日生产过程中HgCl2(g/L)浓度监测值日期6.16.26.36.46.56.66.76.86.96.106.11HgCl2(g/L)上午0.850.830.720.650.640.880.920.940.980.990.86下午0.860.830.780.720.720.860.890.900.990.980.85数据处理实验前数据:统计量数据个数平均值标准差备注Hgcl2的浓度1200.800.045剔除前的数据实验后数据统计量数据个数平均值标准差备注Hgcl2的浓度1170.800.038剔除后的数据 平均值加减一倍两倍三倍x+3x+2x+1xx-x-2x-30.9
5、140.8760.8380.80.7620.7240.686其概率统计表格如下范围x+3x+2x+1x-x-2x-3概率97.50%94.17%71.17%71.1794.17%97.50%思考题解答:1. 监控图实质是什么理论构建的?这图件的主要作用是什么?答:质量监控图实质是利用极限误差理论建立的。它能够直观观察生产过程中影响产品质量的关键参数波动情况,从而可以及时获得调整参数值时间,保证产品质量。此外,它也常用于监控仪器长期工作的稳定性。2. 服从正态分布的随机变量具有什么特点?根据一批测量数据如何判断其是否服正态分布?答:(1)特点:对称性,单峰性,有界性,抵偿性。(2)先算其各自的残
6、余误差,然后画出残余误差的大致散点图,看其是否有服从正态分布或有正态分布的趋势,若有,就可判断这批数据服正态分布。3. 一批测量数据落入其平均值加减一倍,两倍,三倍均方差区间的几率与理论值相同吗?答:不同。因为理论值是由测量次数足够多和测量误差为正态分布时算出来的,此实验显然达不到这样的要求,只能逐步缩小这种差距。 4. 为什么监控数据超过平均值加减三倍方差时必须调整生产流程工艺或测量仪器?答:因为监控数据超过三倍均方差的概率理论上只有0.3%,时相当小的,此时有必要怀疑是由于生产流程工艺或测量仪器带来的系统误差所造成的,所以此时就必须调整生产流程工艺或测量仪器结论与心得体会:结论:在极限误差
7、理论下,可以建立符合要求的置信概率下的监控图,以此来监控生产过程中质量的波动情况,以保证产品质量心得:我认识到了极限误差的实用性,其次,在实验中数据处理时要熟练掌握误差理论中的公式和其意义。实验报告实验工作者:杜华 学号:201206020108 实验日期:2014年3月31号实验名称:实验二 标准物质研制中离群值的剔除实验目的:当测量数据中包含粗大误差时,该测量数据是不可以作为正常数据参加统计与处理的。因此,对一批测量数据处理的第一步,一定是对其是否含有粗大误差做出判断。一般情况下,我们通常将含有粗大误差的数据称为“离群数据”。本实验采用我国在研制玄武岩标准物质时,由国内外16个实验室提供的
8、Th元素分析数据,采用两种以上粗大误差判别方法进行判断,剔除含有粗大误差的离群数据,以提供最终可以用于Th元素定值的正常数据。通过本实验,加深同学们对粗大误差判别方法的理解与应用。实验原理: 1.法判断粗大误差的原理根据正态分布的理论,我们可以知道,正常测量数据大于平均数加减3的概率是很小的,当测量次数足够大时,这个概率仅为0.3。换言之,落入平均数加减3之外区域的数据含有粗大误差的概率为99.7。所以,当测量数据落入平均数加减3之外区域时,我们可以认定其含有粗大误差。2.格罗布斯准则判断粗大误差的原理逻辑上我们知道,对一列测量数据,最有可能含有粗大误差的数据是该列数据中的极值(极大值或者极小
9、值),而判定这些极值数据是否含有粗大误差的依据依然是基于它们是不是落在某个置信概率确定的g0倍均方差的区间内。在格罗布斯准则中,这个g0值由格罗布斯临界值表(2.4.2)给出。测量次数不同,g0值不同;置信概率不同,g0值也不同。仪器设备:安装有EXCELL软件的计算机1台。实验步骤:1.对欲处理的数据进行了解和分析。本实验中欲处理的数据是一组玄武岩标准物质定值数据。玄武岩标准物质是一种地质标准物质。所谓标准物质,应该在两个方面具有典型性与标准性:即在岩性的物质组分上具有典型性与代表性;在物质组分的定值上具有标准性与权威性。因此,地质标准将是我们开展同类地质样品分析的参照标准。所以,参加标准物
10、质定值的全部数据,必须进行严格统计处理,其第一步,就是要剔除离群数据。表5.2.1是我国研制国家一级玄武岩标准物质时,参加标准物质含量定值的国内外16个实验室对同一份样品各自给出的Th元素的19个分析结果。表5.2.1 国内外19个实验室提供的玄武岩样品中的Th元素含量 (单位:10-6)实验室编号No1No2No3No4No4No5No6No8No9No11分析值,8.047.5512.68.38.84.997.18.0313.87.6实验室编号No12No13No14No14No15No16No16No17No19分析值,7.9556.98.18.87.79.377.18.048.112.
11、 对表5.2.1数据进行统计计算,并将统计结果记录在表5.2.2中。表5.2.2 数据统计表统计元素数据个数平均值标准差备注Th元素1910.9936811.27962无3.利用3法判断,剔除含有粗大误差的分析数据。将被剔除数据的有关料填入表5.2.3。表5.2.3 采用3 法剔除数据资料表被剔除的数据平均值标准差56.98.4431.966(2.545,14.341)4.利用格罗布斯准则,根据表2.4.2 格罗布斯准则临界表,采用95置信概率,剔除含有粗大误差的离群分析数据。将被剔除数据的有关资料填入表。5.2.4。表5.2.4 采用格罗布斯准则剔除数据资料表 平均值标准差g0备注56.98
12、.4431.9652.50无13.88.1281.48512.48无12.67.8480.9682.44无4.998.0390.6172.41无5. 对比表5.2.3与表5.2.5检验结果。(思考:如果两个表结果不一致,应该采信哪个表的结果?为什么?)答:应该采信格罗布斯准则,因为此方法可靠度最高实验数据国内外19个实验室提供的玄武岩样品中的Th元素含量 (10-6)实验室编号No1No2No3No4No4No5No6No8No9No11分析值,8.047.5512.68.38.84.997.18.0313.87.6实验室编号No12No13No14No14No15No16No16No17No
13、19分析值,7.9556.98.18.87.79.377.18.048.11数据处理数据统计表统计元素数据个数平均值标准差备注Th元素1910.9936811.27962无采用3 法剔除数据资料表被剔除的数据平均值标准差56.98.4431.966(2.545,14.341)表5.2.4 采用格罗布斯准则剔除数据资料表平均值标准差g0备注56.98.4431.9652.5无13.88.1281.48512.48无12.67.8480.9682.44无4.998.0390.6172.41无思考与解答:1. 为什么测量数据在确定定值前都要进行是否含有粗大误差的检验?答:因为粗大误差的数值比较大,它
14、为对测量结果产生明显的歪曲,所以测量数据在确定定值前都要进行是否含有粗大误差检验,从而将其从结果中剔除。2、剔除离群数据的常用检验方法有哪些?答:剔除离群数据常用的方法有3,罗曼洛夫斯基准则,格罗布斯准则,狄克松准则。3、在采用不同方法检验同一批数据得到不同结果时,应以哪种方法判断的结果为准?为什么?答:应该采信格罗布斯准则,因为此方法可靠度最高结论与心得体会:结论:在实际测量数据中,粗大误差难免存在,所以在处理数据之前先进行粗大误差的检验,看是否存在粗大误差,并予以剔除。体会:在处理数据之前,先进行粗大误差的检验,并且,通过3和格罗布斯准则的应用比较中看出后者的可靠程度更高,所以应记住格罗布斯准。