收藏 分销(赏)

数学广角(重叠问题).doc

上传人:仙人****88 文档编号:5484820 上传时间:2024-11-11 格式:DOC 页数:3 大小:37.51KB 下载积分:10 金币
下载 相关 举报
数学广角(重叠问题).doc_第1页
第1页 / 共3页
数学广角(重叠问题).doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
《数学广角──集合》教学设计 一、教学目标 (一)知识与技能 1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。 2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。 (二)过程与方法 通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。 (三)情感态度与价值观 体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。   三、教学重难点   教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。   教学难点:理解集合图的意义,会解决简单重复问题。 四、教学准备 多媒体课件、小白板、练习题卡 五、教学过程 (一)巧用对比,初悟“重复” 1.观察与比较(课件出示图片) 父与子 (1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算? 第一种:无重复情况。 黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。 预设:列式一:2+2=4(人) 第二种:有重复情况。 汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。 列式二:2+2=4(人)4-1=3(人) 师追问:为什么减1? 教师揭示课题,今天我们研究有重复现象的数学问题。 (二)善用例题,引入新课 1.情境引入(课件出示“通知”)  (1)了解信息,提出问题 你认为三(1)班要选拔多少名同学参加这两项比赛? 让学生尝试回答参加比赛的总人数。 (2)出示名单,引发认知冲突  课件出示三(1)班参赛学生的名单的统计表,让学生观察。 2.观察名单,验证人数,初悟“重复” 问题:仔细观察过这份报名表,你有什么发现? 让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。 (三)合作探究,体验过程 1.策略分析 谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛? 让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。 借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。 2.探究方法 (1)选出几种不同作品展示,理解分析不同整理方法。 预设:方法一 跳绳 杨明 刘红 李芳 陈东 王爱华 马超 丁旭 赵军 徐强 踢毽子 于丽 周晓 朱晓东 陶伟 卢强   方法2:     跳绳           即参加跳绳又参加踢毽子       踢毽子            陈东  丁旭              杨明                 于丽  陶伟           王爱华 赵军              刘红                 周晓  卢强           马超   徐强              李芳                 朱晓东 (2)交流不同思想,比较各自的优缺点。 (3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。 (4)介绍韦恩,拓宽视野 课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的, 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。 3.辩论感悟 谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点? 让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。 4.据图列式,运用集合图 谈话:你了解图中各部分的意义吗? (1)课件演示各部分,让学生比较正确表述各部分的意义。 (2)利用数据,列式计算出该班参加比赛的人数。 指名学生计算,反馈交流,理解各算式的意义。 可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人) 5.变式练习,内化集合思想 课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。 跳绳 9 13 17 18 25 29 33 38 42 踢毽子 17 25 28 30 31 39 40 44   教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。 请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。 师生小结。 (四)巩固应用,建构模型 1.基础性练习 (1)完成教材上105页“做一做”第1题. 指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义 2.趣味性练习(课后练习) 3.拓展性练习 估计三(3)班可能有多少同学参加比赛。 讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人? 判断:参赛的同学最多有17人。(  )参赛的同学最少有 8人。(  ) 小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。 (五)全课总结,呼应课题 师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服