收藏 分销(赏)

生物化学及分子生物学(人卫第九版)-10代谢的整合与调节学习资料.pptx

上传人:精*** 文档编号:5444946 上传时间:2024-11-04 格式:PPTX 页数:84 大小:2.04MB
下载 相关 举报
生物化学及分子生物学(人卫第九版)-10代谢的整合与调节学习资料.pptx_第1页
第1页 / 共84页
生物化学及分子生物学(人卫第九版)-10代谢的整合与调节学习资料.pptx_第2页
第2页 / 共84页
生物化学及分子生物学(人卫第九版)-10代谢的整合与调节学习资料.pptx_第3页
第3页 / 共84页
生物化学及分子生物学(人卫第九版)-10代谢的整合与调节学习资料.pptx_第4页
第4页 / 共84页
生物化学及分子生物学(人卫第九版)-10代谢的整合与调节学习资料.pptx_第5页
第5页 / 共84页
点击查看更多>>
资源描述

1、作者:孙军单位:华中科技大学同济医学院第十章代谢的整合与调节(IntegrationandRegulationofMetabolism)目录第一节代谢的整体性第二节代谢调节的主要方式第三节体内重要组织和器官的代谢特点重点难点熟悉了解掌握1.代谢的整体性2.代谢调节的方式3.重要组织器官的代谢特点1.细胞内物质代谢的调节方式2.饱食、空腹、饥饿状态下的整体代谢1.激素调节靶细胞的代谢2.营养过剩和应激状态下的整体代谢代谢的整体性第一节(IntegrityofMetabolism)(一)代谢的整体性一、体内代谢过程互相联系形成一个整体糖类脂类蛋白质水维生素各种物质代谢之间互有联系,相互依存,构成统

2、一的整体。消化吸收中间代谢废物排泄无机盐(二)体内各种代谢物都具有各自共同的代谢池各种组织消化吸收的糖肝糖原分解糖异生血糖例如(三)体内代谢处于动态平衡生者化,化又生,生化即化生生者化,化又生,生化即化生新必陈,陈乃谢,新陈恒代谢新必陈,陈乃谢,新陈恒代谢(四)氧化分解产生的NADPH为合成代谢提供所需的还原当量乙酰CoANADPH+H+脂酸、胆固醇磷酸戊糖途径氧化反应还原反应二、物质代谢与能量代谢相互关联三大营养物质各自代谢途径共同中间产物共同代谢途径糖脂肪蛋白质乙酰CoA2H氧化磷酸化ATPTACCO2三大营养物质可在体内氧化供能从能量供应的角度看,三大营养物质可以互相代替,互相补充,但也

3、互相制约。一般情况下,机体优先利用燃料的次序是糖(50-70%)、脂肪(10-40%)和蛋白质。供能以糖及脂为主,并尽量节约蛋白质的消耗。饥饿肝糖原分解,肌糖原分解 肝糖异生,蛋白质分解 以脂酸、酮体分解供能为主蛋白质分解明显降低12天一周以上脂肪分解增强ATP增多ATP/ADP比值增高任一供能物质的代谢占优势,常能抑制和节约其他物质的氧化分解。糖分解被抑制磷酸果糖激酶-1被抑制(糖分解代谢关键酶之一)例如:糖分解增强ATP脂酸合成增加分解抑制抑制异柠檬酸脱氢酶(三羧酸循环关键酶)柠檬酸堆积出线粒体激活乙酰CoA羧化酶(脂酸合成关键酶)三、糖、脂质和蛋白质代谢通过中间代谢物而相互联系体内糖、脂

4、质、蛋白质和核酸等的代谢不是彼此孤立的,而是通过共同的中间代谢物、柠檬酸循环和生物氧化等彼此联系、相互转变。一种物质的代谢障碍可引起其他物质的代谢紊乱,如糖尿病时糖代谢的障碍,可引起脂代谢、蛋白质代谢甚至水盐代谢紊乱。(一)葡萄糖可转变为脂肪酸摄入的糖量超过能量消耗时葡萄糖乙酰CoA合成脂肪(脂肪组织)合成糖原储存(肝、肌肉)(一)葡萄糖可转变为脂肪酸脂肪酸不能在体内转变为葡萄糖脂酸乙酰CoA葡萄糖脂肪甘油甘油激酶肝、肾、肠磷酸-甘油葡萄糖(一)葡萄糖可转变为脂肪酸脂肪酸分解依赖于糖代谢饥饿、糖供应不足或糖代谢障碍时:高酮血症草酰乙酸相对不足糖不足脂肪大量动员酮体生成增加氧化受阻(二)葡萄糖与

5、大部分氨基酸可以相互转变大部分氨基酸脱氨基后,生成相应的-酮酸,可转变为糖丙氨酸丙酮酸脱氨基糖异生葡萄糖(二)葡萄糖与大部分氨基酸可以相互转变糖代谢的中间产物可氨基化生成某些非必需氨基酸糖丙酮酸草酰乙酸乙酰CoA柠檬酸-酮戊二酸丙氨酸天冬氨酸谷氨酸(三)氨基酸可转变为多种脂质但脂质几乎不能转变为氨基酸蛋白质可以转变为脂肪氨基酸可作为合成磷脂的原料氨基酸乙酰CoA脂肪丝氨酸磷脂酰丝氨酸胆胺脑磷脂胆碱卵磷脂(三)氨基酸可转变为多种脂质,但脂质几乎不能转变为氨基酸仅脂肪中的甘油可转变为非必需氨基酸但不能说,脂质可转变为氨基酸脂肪甘油磷酸甘油醛糖酵解途径丙酮酸其他-酮酸某些非必需氨基酸琥珀酰CoA延胡

6、索酸草酰乙酸-酮戊二酸柠檬酸乙酰CoA丙酮酸PEP磷酸丙糖葡萄糖或糖原糖-磷酸甘油脂肪酸脂肪甘油三酯乙酰乙酰CoA丙氨酸半胱氨酸丝氨酸苏氨酸色氨酸异亮氨酸亮氨酸色氨酸天冬氨酸天冬酰胺苯丙氨酸酪氨酸异亮氨酸蛋氨酸丝氨酸苏氨酸缬氨酸酮体亮氨酸赖氨酸酪氨酸色氨酸苯丙氨酸谷氨酸精氨酸谷氨酰胺组氨酸缬氨酸CO2CO2氨基酸、糖及脂肪代谢的联系T A C(四)一些氨基酸、磷酸戊糖是合成核苷酸的原料氨基酸是体内合成核酸的重要原料磷酸核糖由磷酸戊糖途径提供甘氨酸天冬氨酸谷氨酰胺一碳单位合成嘌呤合成嘧啶代谢调节的主要方式第二节(TheMainWaysofMetabolicRegulation)高等生物三级水平代

7、谢调节细胞水平代谢调节激素水平代谢调节高等生物在进化过程中,出现了专司调节功能的内分泌细胞及内分泌器官,其分泌的激素可对其他细胞发挥代谢调节作用。整体水平代谢调节在中枢神经系统的控制下,或通过神经纤维及神经递质对靶细胞直接发生影响,或通过某些激素的分泌来调节某些细胞的代谢及功能,并通过各种激素的互相协调而对机体代谢进行综合调节。一、细胞内物质代谢主要通过对关键酶活性的调节来实现的细胞水平的代谢调节主要是酶水平的调节。细胞内酶呈隔离分布。代谢途径的速度、方向由其中的关键酶的活性决定。代谢调节主要是通过对关键酶活性的调节而实现的。(一)各种代谢在细胞内区隔分布是物质代谢及其调节的亚细胞结构基础多酶

8、体系分布多酶体系分布DNA、RNA合成细胞核糖酵解细胞质蛋白质合成内质网、细胞质戊糖磷酸途径细胞质糖原合成细胞质糖异生细胞质、线粒体脂肪酸合成细胞质脂肪酸氧化细胞质、线粒体胆固醇合成内质网、细胞质多种水解酶溶酶体磷脂合成内质网柠檬酸循环线粒体血红素合成细胞质、线粒体氧化磷酸化线粒体尿素合成细胞质、线粒体酶的这种区隔分布,能避免不同代谢途径之间彼此干扰,使同一代谢途径中的系列酶促反应能够更顺利地连续进行,既提高了代谢途径的进行速度,也有利于调控。(二)关键酶活性决定整个代谢途径的速度和方向关键酶催化的反应特点常常催化一条代谢途径的第一步反应或分支点上的反应,速度最慢,其活性能决定整个代谢途径的总

9、速度。常催化单向反应或非平衡反应,其活性能决定整个代谢途径的方向。酶活性除受底物控制外,还受多种代谢物或效应剂调节。关键酶(keyenzymes)代谢过程中具有调节作用的酶。某些重要的代谢途径的关键酶代谢途径关键酶糖酵解己糖激酶磷酸果糖激酶-1丙酮酸激酶丙酮酸氧化脱羧丙酮酸脱氢酶系柠檬酸循环异柠檬酸脱氢酶-酮戊二酸脱氢酶系柠檬酸合酶糖原分解磷酸化酶糖原合成糖原合酶糖异生丙酮酸羧化酶磷酸烯醇式丙酮酸羧激酶果糖-1,6-二磷酸酶葡糖-6-磷酸酶脂肪酸合成乙酰辅酶A羧化酶脂肪酸分解肉碱脂酰转移酶I胆固醇合成HMG辅酶A还原酶快速调节(改变酶分子结构)迟缓调节(改变酶含量)数秒、数分钟改变单个酶分子的

10、催化能力数小时、几天调节酶的合成与降解速度调节关键酶活性(酶分子结构改变或酶含量改变)是细胞水平代谢调节的基本方式,也是激素水平代谢调节和整体代谢调节的重要环节。别构调节(allostericregulation)化学修饰调节(chemicalmodification)(三)别构调节通过别构效应改变关键酶活性一些小分子化合物能与酶蛋白分子活性中心外的特定部位特异结合,改变酶蛋白分子构象、从而改变酶活性,这种调节称为酶的别构调节(allostericregulation)。1.别构调节是生物界普遍存在的代谢调节方式一些代谢途径中的别构酶及其效应剂代谢途径别构酶别构激活剂别构抑制剂糖酵解磷酸果糖激

11、酶-1F-2,6-BP、AMP、ADP、F-1,6-BP柠檬酸、ATP丙酮酸激酶F-1,6-BP、ADP、AMPATP、丙氨酸己糖激酶葡糖-6-磷酸丙酮酸氧化脱羧丙酮酸脱氢酶复合体AMP、CoA、NAD+、ADP、AMPATP、乙酰CoA、NADH柠檬酸循环柠檬酸合酶乙酰CoA、草酰乙酸、ADP柠檬酸、NADH、ATP-酮戊二酸脱氢酶复合体琥珀酰CoA、NADH异柠檬酸脱氢酶ADP、AMPATP糖原分解磷酸化酶(肌)AMPATP、葡糖-6-磷酸磷酸化酶(肝)葡萄糖、F-1,6-BP、F-1-P糖异生丙酮酸羧化酶乙酰CoAAMP脂肪酸合成乙酰辅酶A羧化酶乙酰CoA、柠檬酸、异柠檬酸软脂酰CoA、

12、长链脂酰CoA氨基酸代谢谷氨酸脱氢酶ADP、GDPATP、GTP嘌呤合成PRPP酰胺转移酶PRPPIMP、AMP、GMP嘧啶合成氨基甲酰磷酸合成酶IIUMP2.别构效应剂通过改变酶分子构象改变酶活性别构酶催化亚基调节亚基别构效应剂:底物、终产物其他小分子代谢物别构效应剂+酶的调节亚基酶的构象改变酶的活性改变(激活或抑制)疏松亚基聚合紧密亚基解聚酶分子多聚化(1)调节亚基含有一个“假底物”(pseudosubstrate)序列“假底物”序列能阻止催化亚基结合底物,抑制酶活性;效应剂结合调节亚基导致“假底物”序列构象变化,释放催化亚基,使其发挥催化作用。如cAMP激活PKA。(2)别构效应剂与调节

13、亚基结合,能引起酶分子三级和/或四级结构在“T”构象(紧密态、无活性低活性)与“R”构象(松弛态、有活性高活性)之间互变,从而影响酶活性。如氧调节Hb。别构效应的机制有两种:3.别构调节使一种物质的代谢与相应的代谢需求和相关物质的代谢协调调节相应代谢的强度、方向,以协调相关代谢、满足相应代谢需求别构效应剂(底物、终产物、其他小分子代谢物)细胞内浓度的改变(反映相关代谢途径的强度和相应的代谢需求)关键酶构象改变,影响酶活性代谢终产物反馈抑制(feedbackinhibition)反应途径中的关键酶,避免产生超多需要的产物乙酰CoA乙酰CoA羧化酶丙二酰CoA长链脂酰CoA变构调节使能量得以有效利

14、用,避免生成过多造成浪费G-6-P+糖原磷酸化酶抑制糖的氧化糖原合酶促进糖的储存变构调节使不同的代谢途径相互协调进行柠檬酸+磷酸果糖激酶-1抑制糖的氧化乙酰辅酶A羧化酶促进脂酸的合成(四)化学修饰调节通过酶促共价修饰调节酶活性1.酶促共价修饰有多种形式酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰(covalentmodification),从而引起酶活性改变,这种调节称为酶的化学修饰。(四)化学修饰调节通过酶促共价修饰调节酶活性1.酶促共价修饰有多种形式化学修饰的主要方式磷酸化-去磷酸乙酰化-脱乙酰甲基化-去甲基腺苷化-脱腺苷SH与SS互变磷酸化/去磷酸化修饰对酶活性的调节酶化学修饰类型

15、酶活性改变糖原磷酸化酶磷酸化/去磷酸化激活/抑制磷酸化酶b激酶磷酸化/去磷酸化激活/抑制糖原合酶磷酸化/去磷酸化抑制/激活丙酮酸脱羧酶磷酸化/去磷酸化抑制/激活磷酸果糖激酶磷酸化/去磷酸化抑制/激活丙酮酸脱氢酶磷酸化/去磷酸化抑制/激活HMG-CoA还原酶磷酸化/去磷酸化抑制/激活HMG-CoA还原酶激酶磷酸化/去磷酸化激活/抑制乙酰CoA羧化酶磷酸化/去磷酸化抑制/激活脂肪细胞甘油三酯脂酶磷酸化/去磷酸化激活/抑制酶的磷酸化与去磷酸化2.酶的化学修饰调节具有级联放大效应酶促化学修饰的特点:受化学修饰调节的关键酶都具无(或低)活性和有(或高)活性两种形式,由两种酶催化发生共价修饰,互相转变。酶

16、的化学修饰是另外一个酶的酶促反应,特异性强,有放大效应。磷酸化与去磷酸化是最常见的酶促化学修饰反应,作用迅速,有放大效应,是调节酶活性经济有效的方式。催化共价修饰的酶自身常受别构调节、化学修饰调节,并与激素调节偶联,形成由信号分子、信号转导分子和效应分子组成的级联反应。同一个酶可以同时受变构调节和化学修饰调节。(五)通过改变细胞内酶含量调节酶活性1.诱导或阻遏酶蛋白基因表达调节酶含量酶的底物、产物、激素或药物可诱导或阻遏酶蛋白基因的表达。诱导剂或阻遏剂在酶蛋白生物合成的转录或翻译过程中发挥作用,影响转录较常见。体内也有一些酶,其浓度在任何时间、任何条件下基本不变,几乎恒定。这类酶称为组成(型)

17、酶(constitutiveenzyme),如甘油醛-3-磷酸脱氢酶(glyceraldehyde3-phosphatedehydrogenase,GAPDH),常作为基因表达变化研究的内参照(internalcontrol)。酶的诱导剂经常是底物或类似物酶的阻遏剂经常是代谢产物(五)通过改变细胞内酶含量调节酶活性2.改变酶蛋白降解速度调节酶含量溶酶体泛素-蛋白酶体释放蛋白水解酶,降解蛋白质泛素识别、结合蛋白质;蛋白水解酶降解蛋白质通过改变酶蛋白分子的降解速度,也能调节酶的含量。二、激素通过特异性受体调节靶细胞的代谢内、外环境改变机体相关组织分泌激素激素与靶细胞上的受体结合靶细胞产生生物学效应

18、,适应内外环境改变二、激素通过特异性受体调节靶细胞的代谢n激素分类膜受体激素胞内受体激素按激素受体在细胞的部位不同,分为:(一)膜受体激素通过跨膜信号转导调节代谢腺苷环化酶(无活性)腺苷环化酶(有活性)激素(胰高血糖素、肾上腺素等)+受体ATPcAMPPKA(无活性)磷酸化酶b激酶糖原合酶糖原合酶-PPKA(有活性)磷酸化酶b磷酸化酶a-P磷酸化酶b激酶-PPi磷蛋白磷酸酶-1PiPi磷蛋白磷酸酶-1磷蛋白磷酸酶-1磷蛋白磷酸酶抑制剂-P磷蛋白磷酸酶抑制剂PKA(有活性)(二)胞内受体激素通过激素-胞内受体复合物改变基因表达、调节代谢三、机体通过神经系统及神经-体液途径协调整体的代谢整体水平调

19、节:在神经系统主导下,调节激素释放,并通过激素整合不同组织器官的各种代谢,实现整体调节,以适应饱食、空腹、饥饿、营养过剩、应激等状态,维持整体代谢平衡。(一)饱食状态下机体三大物质代谢与膳食组成有关(1)机体主要分解葡萄糖供能(2)未被分解的葡萄糖,部分合成肝糖原和肌糖原贮存;部分在肝内合成甘油三酯,以VLDL形式输送至脂肪等组织。(3)吸收的甘油三酯,部分经肝转换成内源性甘油三酯,大部分输送到脂肪组织、骨骼肌等转换、储存或利用。混合膳食胰岛素水平中度升高:(一)饱食状态下机体三大物质代谢与膳食组成有关(1)部分葡萄糖合成肌糖原和肝糖原和VLDL(2)大部分葡萄糖直接被输送到脂肪组织、骨骼肌、

20、脑等组织转换成甘油三酯等非糖物质储存或利用。高糖膳食胰岛素水平明显升高,胰高血糖素降低:(一)饱食状态下机体三大物质代谢与膳食组成有关(1)肝糖原分解补充血糖(2)肝利用氨基酸异生为葡萄糖补充血糖(3)部分氨基酸转化成甘油三酯(4)还有部分氨基酸直接输送到骨骼肌。高蛋白膳食胰岛素水平中度升高,胰高血糖素水平升高:(一)饱食状态下机体三大物质代谢与膳食组成有关(1)肝糖原分解补充血糖(2)肌组织氨基酸分解,转化为丙酮酸,输送至肝异生为葡萄糖,补充血糖。(3)吸收的甘油三酯主要输送到脂肪、肌组织等。(4)脂肪组织在接受吸收的甘油三酯同时,也部分分解脂肪成脂肪酸,输送到其他组织。(5)肝氧化脂肪酸,

21、产生酮体。高脂膳食胰岛素水平降低,胰高血糖素水平升高:(二)空腹机体物质代谢以糖原分解、糖异生和中度脂肪动员为特征(1)餐后68小时肝糖原即开始分解补充血糖。(2)餐后1618小时肝糖原即将耗尽,糖异生补充血糖。脂肪动员中度增加,释放脂肪酸。肝氧化脂肪酸,产生酮体,主要供应肌组织。骨骼肌部分氨基酸分解,补充肝糖异生的原料。空腹:通常指餐后12小时以后,体内胰岛素水平降低,胰高血糖素升高。(三)饥饿时机体主要氧化分解脂肪供能1.短期饥饿后糖氧化供能减少而脂肪动员加强糖原消耗血糖趋于降低胰岛素分泌减少胰高血糖素分泌增加引起一系列的代谢变化短期饥饿:通常指13天未进食(三)饥饿时机体主要氧化分解脂肪

22、供能1.短期饥饿后糖氧化供能减少而脂肪动员加强(1)机体从葡萄糖氧化供能为主转变为脂肪氧化供能为主:除脑组织细胞和红细胞外,组织细胞减少摄取利用葡萄糖,增加摄取利用脂肪酸和酮体。(2)脂肪动员加强且肝酮体生成增多:脂肪动员释放的脂肪酸约25在肝氧化生成酮体。(3)肝糖异生作用明显增强(150g天):以饥饿1636小时增加最多。原料主要来自氨基酸,部分来自乳酸及甘油。(4)骨骼肌蛋白质分解加强:略迟于脂肪动员加强。氨基酸异生成糖。(三)饥饿时机体主要氧化分解脂肪供能2.长期饥饿可造成器官损害甚至危及生命长期饥饿:指未进食3天以上(1)脂肪动员进一步加强:生成大量酮体,脑利用酮体超过葡萄糖。肌组织

23、利用脂肪酸。(2)蛋白质分解减少:释出氨基酸减少。(3)糖异生明显减少(与短期饥饿相比):乳酸和甘油成为肝糖异生的主要原料。肾糖异生作用明显增强,几乎与肝相等。(四)应激使机体分解代谢加强应激(stress)是机体或细胞为应对内、外环境刺激做出一系列非特异性反应。这些刺激包括中毒、感染、发热、创伤、疼痛、大剂量运动或恐惧等。应激反应可以是“一过性”的,也可以是持续性的。应激状态下,交感神经兴奋,肾上腺髓质、皮质激素分泌增多,血浆胰高血糖素、生长激素水平增加,而胰岛素分泌减少,引起一系列代谢改变。(四)应激使机体分解代谢加强代谢改变1.应激使血糖升高2.应激使脂肪动员增强3.应激使蛋白质分解加强

24、这对保证大脑、红细胞的供能有重要意义。为心肌、骨骼肌及肾等组织供能。骨骼肌释出丙氨酸等氨基酸增加,氨基酸分解增强,负氮平衡。应激时机体的代谢变化内分泌腺/组织激素及代谢变化血中含量变化垂体前叶ACTH分泌增加ACTH生长素分泌增加生长素胰腺-细胞胰高血糖素分泌增加胰高血糖素-细胞胰岛素分泌抑制胰岛素肾上腺髓质去甲肾上腺素/肾上腺素分泌增加肾上腺素肾上腺皮质皮质醇分泌增加皮质醇肝糖原分解增加葡萄糖糖原合成减少糖异生增强脂肪酸-氧化增加骨骼肌糖原分解增加乳酸葡萄糖的摄取利用减少葡萄糖蛋白质分解增加氨基酸脂肪酸-氧化增强脂肪组织脂肪分解增强游离脂肪酸葡萄糖摄取及利用减少甘油脂肪合成减少(五)肥胖是多

25、因素引起代谢失衡的结果1.肥胖是多种重大慢性疾病的危险因素加强肥胖是动脉粥样硬化、冠心病、中风、糖尿病、高血压等疾病的主要危险因素之一,与痴呆、脂肪肝病、呼吸道疾病和某些肿瘤的发生相关。“代谢综合征”(metabolicsyndrome)是指一组以肥胖、高血糖(糖调节受损或糖尿病)、高血压以及血脂异常高TG(甘油三酯)血症和(或)低HDL-C(高密度脂蛋白胆固醇)血症集结发病的临床征候群,特点是机体代谢上相互关联的危险因素在同一个体的组合。其表现为体脂(尤其是腹部脂肪)过剩、高血压、胰岛素耐受、血浆胆固醇水平升高以及血浆脂蛋白异常等。(五)肥胖是多因素引起代谢失衡的结果2.较长时间的能量摄入大

26、于消耗导致肥胖过剩能量以脂肪形式储存是肥胖的基本原因。神经内分泌机制失调,就会引起摄食行为、物质和能量代谢障碍,导致肥胖。(1)抑制食欲激素功能障碍引起肥胖:瘦蛋白,胆囊收缩素(CCK),-促黑激素(-MSH)等(2)刺激食欲激素功能异常增强引起肥胖:如生长激素释放肽,神经肽Y(3)肥胖患者脂连蛋白缺陷(4)胰岛素抵抗导致肥胖(五)肥胖是多因素引起代谢失衡的结果肥胖源于物质和能量代谢的失衡,一旦形成反过来加重代谢紊乱。在肥胖形成期:靶细胞对胰岛素敏感,血糖降低,耐糖能力正常。在肥胖稳定期:表现出高胰岛素血症,组织对胰岛素抵抗,耐糖能力降低,血糖正常或升高。越肥胖或胰岛素抵抗:血糖浓度越高,糖代

27、谢的紊乱程度越重,同时脂代谢异常,高胆固醇、高LDL-C、低HDL-C)、高甘油三酯。体内重要组织和器官的代谢特点第三节(TheImportantMetabolicCharacteristicsofTissuesandOrgansintheBody)满足机体各组织、器官基本细胞功能需要的代谢基本相同,但人体各组织、器官高度分化,功能各异,这些组织、器官的代谢具有各自的特点。在这些组织、器官的细胞中形成了特定的酶谱,即不同的酶系种类和含量,使这些组织、器官除了具有一般的基本代谢外,还具有特点鲜明的代谢途径,以适应相应的功能需要。器官或器官或组织主要代主要代谢途径途径主要代主要代谢物物主要代主要代

28、谢产物物特定的特定的酶主要功能主要功能肝肝糖异生、脂肪酸糖异生、脂肪酸-氧氧化、脂肪合成、化、脂肪合成、酮体合体合成、糖有氧氧化成、糖有氧氧化乳酸、甘油、氨乳酸、甘油、氨基酸脂肪酸、葡基酸脂肪酸、葡萄糖萄糖葡萄糖、葡萄糖、VLDL、HDL、酮体体葡糖激葡糖激酶、葡糖、葡糖-6-磷磷酸酸酶、甘油激、甘油激酶、磷酸、磷酸烯醇式丙醇式丙酮酸酸羧激激酶物物质代代谢的枢的枢纽脑糖有氧氧化、糖酵解、糖有氧氧化、糖酵解、氨基酸代氨基酸代谢葡萄糖、氨基酸、葡萄糖、氨基酸、酮体体乳酸、乳酸、CO2、H2O神神经中枢中枢心肌心肌有氧氧化有氧氧化乳酸、脂肪酸、乳酸、脂肪酸、酮体、葡萄糖体、葡萄糖CO2、H2O脂蛋白

29、脂肪脂蛋白脂肪酶泵出血液出血液骨骼肌骨骼肌糖酵解、有氧氧化糖酵解、有氧氧化葡萄糖、脂肪酸、葡萄糖、脂肪酸、酮体体乳酸、乳酸、CO2、H2O脂蛋白脂肪脂蛋白脂肪酶肌肉收肌肉收缩脂肪脂肪组织酯化脂肪酸、脂肪化脂肪酸、脂肪动员、合成脂肪合成脂肪VLDL、CM游离脂肪酸、甘游离脂肪酸、甘油油脂蛋白脂肪脂蛋白脂肪酶、激素敏、激素敏感性脂肪感性脂肪酶储存脂肪存脂肪肾糖异生、糖酵解糖异生、糖酵解脂肪酸、葡萄糖、脂肪酸、葡萄糖、乳酸、甘油乳酸、甘油葡萄糖葡萄糖甘油激甘油激酶、磷酸、磷酸烯醇式醇式丙丙酮酸酸羧激激酶泌尿泌尿重要器官或组织的主要供能代谢特点一、肝是人体物质代谢中心和枢纽肝具有特殊的组织结构和组织化

30、学构成,是机体物质代谢的枢纽,是人体的中心生化工厂。在糖、脂、蛋白质、水、无机盐和维生素代谢中均具有独特而重要的作用。肝的耗氧量占全身耗氧量的20%,可以消耗葡萄糖、脂肪酸、甘油和氨基酸等以供能,但不能利用酮体。肝合成和储存糖原可达肝重的5%,约75100g,而肌糖原仅占肌重的1%。肝还具有糖异生、酮体生成等独特的代谢方式。肝虽可大量合成脂肪,但不能储存脂肪,肝细胞合成的脂肪随即合成VLDL释放入血。二、脑主要利用葡萄糖供能且耗氧量大(一)葡萄糖和酮体是脑的主要能量物质(二)脑耗氧量高达全身耗氧总量的四分之一(三)脑具有特异的氨基酸及其代谢调节机制葡萄糖为主要能源,每天消耗约100g。不能利用

31、脂酸,葡萄糖供应不足时,利用酮体。三、心肌可利用多种能源物质心主要通过有氧氧化脂肪酸、酮体和乳酸获得能量,极少进行糖酵解。心肌在饱食状态下不排斥利用葡萄糖,餐后数小时或饥饿时利用脂肪酸和酮体,运动中或运动后则利用乳酸。(一)心肌可利用多种营养物质及其代谢中间产物为能源(二)心肌细胞分解营养物质供能方式以有氧氧化为主脂肪酸乳酸酮体葡萄糖心肌细胞富含LDH1、肌红蛋白、细胞色素及线粒体。四、骨骼肌以肌糖原和脂肪酸作为主要能量来源(一)不同类型骨骼肌产能方式不同直接能源:ATP磷酸肌酸:可快速转移能量,生成ATP静息状态:以有氧氧化肌糖原、脂肪酸、酮体为主剧烈运动:糖无氧酵解供能大大增加乳酸循环:整

32、合糖异生与肌糖酵解途径红肌:耗能多,富含肌红蛋白及细胞色素体系,具有较强氧化磷酸化能力。白肌:耗能少,主要靠酵解供能。(二)骨骼肌适应不同耗能状态选择不同能源五、脂肪组织是储存和动员甘油三酯的重要组织(一)机体将从膳食中摄取的能量主要储存于脂肪组织膳食脂肪:以CM形式运输至脂肪组织储存。膳食糖:主要运输至肝转化成脂肪,以VLDL形式运输至脂肪组织储存。部分在脂肪细胞转化为脂肪储存。五、脂肪组织是储存和动员甘油三酯的重要组织(二)饥饿时主要靠分解储存于脂肪组织的脂肪供能饥饿脂解激素HSL脂肪动员脂肪酸甘油酮体肝氧化供能六、肾可进行糖异生和酮体生成肾髓质无线粒体,主要靠糖酵解供能;肾皮质主要靠脂肪

33、酸、酮体有氧氧化供能。一般情况下,肾糖异生只有肝糖异生葡萄糖量的10%。长期饥饿(56周),肾糖异生可达每天40g,与肝糖异生的量几乎相等。本章小结p细胞内多种物质的代谢同时进行,它们通过中间代谢物形成彼此相互联系、相互转变、相互依存的统一的整体。糖、脂肪、蛋白质等营养物质在供应能量上可互相代替,并互相制约,但不能完全互相转变。p各组织器官之间的各种物质的代谢需要彼此协调,才能维持细胞、机体的正常功能、适应机体各种内外环境的改变。p高等动物包括人的各组织器官高度分化、具有各自的功能和代谢特点,本章小结p代谢的细胞水平调节主要通过改变关键酶活性实现。p通过改变酶分子结构调节酶活性见效快,方式包括

34、别构调节和化学修饰调节。p别构调节系别构剂与酶的调节亚基结合引起酶分子构象改变,进而改变酶活性。p化学修饰调节是酶催化的化学反应,涉及酶蛋白的化学结构共价键与组成变化;有磷酸化、甲基化、乙酰化等形式,以磷酸化为主;化学修饰调节具有放大效应。p酶含量调节通过改变其合成或/和降解速率实现,作用缓慢但持久。本章小结p激素水平代谢调节是激素通过与靶细胞受体特异结合及后续的一系列细胞信号转导反应,最终引起代谢改变。p在神经系统主导下,机体通过调节激素释放,整合不同组织细胞内代谢途径,实现整体调节,以适应饱食、空腹、饥饿、营养过剩、应激等状态,维持整体代谢平衡。本章知识点框架图代谢的整体性代谢的整体性体内

35、代谢过程形成一个整体体内代谢过程形成一个整体物质代谢与能量代谢相互关联物质代谢与能量代谢相互关联糖、脂质和蛋白质代谢相互联系糖、脂质和蛋白质代谢相互联系整体性整体性代谢池代谢池动态平衡动态平衡NADPH乙酰乙酰CoA、TAC、ATP葡萄糖可转变为脂肪酸葡萄糖可转变为脂肪酸葡萄糖可转变多数氨基酸葡萄糖可转变多数氨基酸氨基酸可转变为多种脂质氨基酸可转变为多种脂质脂质不能转变为糖、氨基酸脂质不能转变为糖、氨基酸代谢调节的主代谢调节的主要方式要方式细胞水平的调节细胞水平的调节激素水平的调节激素水平的调节整体水平的调节整体水平的调节关键酶关键酶酶活性酶活性酶含量酶含量别构调节别构调节共共价修饰调节价修饰

36、调节诱导、阻遏诱导、阻遏溶酶体、泛素溶酶体、泛素-蛋白酶体蛋白酶体膜受体介导信号转导膜受体介导信号转导胞内受体介导信号转导胞内受体介导信号转导饱食、空腹、饥饿、营养过剩、应激饱食、空腹、饥饿、营养过剩、应激体内重要组织和体内重要组织和器官的代谢特点器官的代谢特点肝是人体物质代谢中心和枢纽肝是人体物质代谢中心和枢纽脑主要利用葡萄糖供能且耗氧量大脑主要利用葡萄糖供能且耗氧量大心肌可利用多种能源物质心肌可利用多种能源物质骨骼肌以肌糖原和脂肪酸为主要能源骨骼肌以肌糖原和脂肪酸为主要能源脂肪组织储存和动员甘油三酯脂肪组织储存和动员甘油三酯肾可进行糖异生和酮体生成肾可进行糖异生和酮体生成代谢的整合代谢的整合与调节与调节谢谢观看

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服