1、15.3等腰三角形 细心观察积极探索细心观察积极探索 在观察中发现特点在观察中发现特点 在探索中提高能力在探索中提高能力 1活动(一):活动(一):细心观察细心观察2活动(一):活动(一):细心观察细心观察3活动(一):活动(一):细心观察细心观察4活动(一):活动(一):细心观察细心观察5共共同同特特点点活动(一):活动(一):细心观察细心观察6ABC等腰三角形等腰三角形:有两条边相等的三角形有两条边相等的三角形,叫做等腰三角形叫做等腰三角形.相等的两条边叫做相等的两条边叫做腰腰,另一条边叫做另一条边叫做底边底边,底边与腰的夹角叫做底边与腰的夹角叫做底角底角.两腰所夹的角叫做两腰所夹的角叫做
2、顶角顶角,腰腰腰腰底边底边顶角顶角底角底角回顾回顾7如图如图,把一张长方形的纸按图中虚线对折把一张长方形的纸按图中虚线对折,并剪去绿色部分并剪去绿色部分,再把它展再把它展开开,得到的得到的ABCABC有什么特点有什么特点?ABCAB=AC等腰三角形等腰三角形活动(二):活动(二):动手操作动手操作8 上面剪出的等腰三角形是轴对称图形吗?上面剪出的等腰三角形是轴对称图形吗?ABCD把剪出的等腰三角形把剪出的等腰三角形ABCABC沿折痕对折,沿折痕对折,找出其中重合的线段和角,填入下表:找出其中重合的线段和角,填入下表:重合的线段重合的线段重合的角重合的角等腰三角形除了两腰相等以外等腰三角形除了两
3、腰相等以外,你还能你还能发现它的其他性质吗发现它的其他性质吗?AB=ACAB=ACBD=CDBD=CDAD=ADAD=ADB=B=C CADB=ADB=ADCADCBAD=BAD=CADCAD活动(三):活动(三):细心观察细心观察 大胆猜想大胆猜想9性质性质1(等边对等角等边对等角)等腰三角形的两个底角相等。等腰三角形的两个底角相等。ABCD已知:已知:ABC中,中,AB=AC求证:求证:B=C想一想:想一想:1.如何证明两个角相等?如何证明两个角相等?议一议议一议:2.2.如何构造两个全等的三如何构造两个全等的三 角形?角形?活动(四):活动(四):小组讨论小组讨论10已知:已知:如图,在
4、如图,在ABCABC中,中,AB=AC.AB=AC.求证:求证:B=B=C.C.ABC等腰三角形的两个底角相等。等腰三角形的两个底角相等。D证明:证明:作底边的中线作底边的中线ADAD,则,则BD=CDBD=CDAB=AC (AB=AC (已知已知 )BD=CD(BD=CD(已作已作 )AD=AD(AD=AD(公共边公共边)BAD CAD(SSS).BAD CAD(SSS).B=C(B=C(全等三角形的对应角相等全等三角形的对应角相等).).在在BADBAD和和CADCAD中中方法一:作底边上的中线方法一:作底边上的中线11已知:已知:如图,在如图,在ABCABC中,中,AB=AC.AB=AC
5、.求证:求证:B=B=C.C.ABC等腰三角形的两个底角相等。等腰三角形的两个底角相等。D证明:证明:作顶角的平分线作顶角的平分线ADAD,则,则1=1=2 2AB=AC (AB=AC (已知已知 )1=1=2(2(已作已作 )AD=AD(AD=AD(公共边公共边)BAD CAD(SAS).BAD CAD(SAS).B=C(B=C(全等三角形的对应角相等全等三角形的对应角相等).).方法二:作顶角的平分线方法二:作顶角的平分线在在BADBAD和和CADCAD中中1212已知:已知:如图,在如图,在ABCABC中,中,AB=AC.AB=AC.求证:求证:B=B=C.C.ABC等腰三角形的两个底角
6、相等。等腰三角形的两个底角相等。D证明:证明:作底边的高线作底边的高线ADAD,则,则BDA=BDA=CDA=90CDA=90AB=AC (AB=AC (已知已知 )AD=AD(AD=AD(公共边公共边)RtBAD RtCAD(HL).RtBAD RtCAD(HL).B=C(B=C(全等三角形的对应角相等全等三角形的对应角相等).).方法三:作底边的高线方法三:作底边的高线在在RtBADRtBAD和和RtCADRtCAD中中13(等腰三角形三线合一)ABCD性质性质2 2 等腰三角形的等腰三角形的顶角顶角平分线平分线与与底边底边上的上的中线中线,底边底边上的高上的高互相重合互相重合活动(五):
7、活动(五):小组讨论小组讨论 性质性质3 3 等腰三角形是轴对称图形,其顶角的平分等腰三角形是轴对称图形,其顶角的平分线(底边上的中线、底边上的高)所在的直线就是线(底边上的中线、底边上的高)所在的直线就是等腰三角形的对称轴。等腰三角形的对称轴。14 1 1.根据等腰三角形性质根据等腰三角形性质2 2填空填空,在在ABCABC中,中,AB=AC AB=AC,(1)ADBC(1)ADBC,_=_=_,_=_._=_.(2)AD(2)AD是中线,是中线,_ _,_=_._=_.(3)AD(3)AD是角平分线,是角平分线,_ _ _ _,_=_._=_.ABCDBADCADCADBDCDADBCBD
8、BADBCADCD 知一线得二线知一线得二线 “三线合一三线合一”可以帮助我可以帮助我们解决线段的垂直、相等们解决线段的垂直、相等以及角的相等问题。以及角的相等问题。152 2、等腰三角形一个底角为、等腰三角形一个底角为70,70,它的顶角为它的顶角为_._.3 3、等腰三角形一个角为、等腰三角形一个角为70,70,它的另外两个角为它的另外两个角为 _._.4 4、等腰三角形一个角为、等腰三角形一个角为110,110,它的另外两个角为它的另外两个角为_._.顶角度数顶角度数+2+2底角度数底角度数=180=180 0 0顶角度数顶角度数180180 0 0底角度数底角度数9090结论结论:在等
9、腰三角形中在等腰三角形中,40 35,35 70,40 或或 55,5516 例例1、如图,在、如图,在ABC中中,AB=AC,点,点D在在AC上,且上,且BD=BC=AD,求,求ABC各角的度数。各角的度数。1、图中有哪几个等腰三角形、图中有哪几个等腰三角形?ABCDx2x2x2xABC ABD BDC2 2、有哪些相等的角?、有哪些相等的角?ABC=ABC=ACB=ACB=BDC BDC A=A=ABDABD3 3、这两组相等的角之间还有什、这两组相等的角之间还有什么关系?么关系?BDC=2BDC=2 A A ABC+ACB+A=180 17 已知:如图,房屋的顶角已知:如图,房屋的顶角B
10、AC=100,过屋顶过屋顶A的立柱的立柱AD BC,屋椽屋椽AB=AC.求顶架上求顶架上B、C、BAD、CAD的度数的度数.ABDCBAD=CAD=50BAD=CAD(等腰三角形顶角的平分线与底边(等腰三角形顶角的平分线与底边上的高互相重合)上的高互相重合).又又ADBC,B=C=180BAC=40(三角形内角和定理三角形内角和定理)解:在解:在ABC中中AB=AC,B=C(等边对等角)(等边对等角)又BAC=100 18 (1)(1)猜想一下,等腰三角形底边中点到两腰的距离猜想一下,等腰三角形底边中点到两腰的距离相等吗?如图将等腰三角形相等吗?如图将等腰三角形ABC沿对称轴折叠,观察沿对称轴折叠,观察DE与与DF的关系,并证明你的结论。的关系,并证明你的结论。ABCDEF (2)(2)如果如果DEDE、DFDF分别是分别是AB,ACAB,AC上的中线或上的中线或ADB,ADB,ADCADC的平分线,它们还相等吗?由等腰三角形是轴对的平分线,它们还相等吗?由等腰三角形是轴对称图形,利用类似的方法,还可以得到等腰三角形中哪称图形,利用类似的方法,还可以得到等腰三角形中哪些相等的些相等的线段?线段?已知:已知:在在ABC中,中,AB=AC.点点D 是是BC的中点,的中点,DE AB于于E,DF AC于于F求证:求证:DEDF活动(六):活动(六):拓展提高拓展提高1920