收藏 分销(赏)

苯乙烯生产中年处理3.5万吨乙苯和多乙苯分离工段的工艺.doc

上传人:天**** 文档编号:5426598 上传时间:2024-10-31 格式:DOC 页数:46 大小:767KB 下载积分:12 金币
下载 相关 举报
苯乙烯生产中年处理3.5万吨乙苯和多乙苯分离工段的工艺.doc_第1页
第1页 / 共46页
苯乙烯生产中年处理3.5万吨乙苯和多乙苯分离工段的工艺.doc_第2页
第2页 / 共46页


点击查看更多>>
资源描述
北京化工大学北方学院毕业设计 诚信声明 本人申明: 我所呈交的本科毕业设计(论文)是本人在导师指导下对四年专业知识而进行的研究工作及全面的总结。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中创新处不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学北方学院或其它教育机构的学位或证书而已经使用过的材料。与我一同完成毕业设计(论文)的同学对本课题所做的任何贡献均已在文中做了明确的说明并表示了谢意。 若有不实之处,本人承担一切相关责任。 本人签名: 年 月 日 III 苯乙烯生产中年处理3.5万吨乙苯和多乙苯分离工段的工艺 摘 要 在苯乙烯生产中,乙苯和多乙苯的分离是其中的一个重要的环节。选用填料精馏塔进行设计,设计的基本内容是,完成填料塔的物料衡算、能量衡算等得到理论塔板数13块、塔径为600mm、塔高为6658.7mm并进行冷凝器、再沸器、预热器、泵的计算和选型。画出带控制点的工艺流程图和设备的车间布置图。 关键词:乙苯 填料精馏塔 工艺设计 Technology separation of section annual processing capacity of 3500 tons of ethylbenzene and polyethylbenzene in the production of styrene Abstract In the production of styrene, the separation of ethylbenzene and polyethylbenzene was one of the most important links. The packed distillation column was used in this design.The basic contents of the design were, completed material packing tower, energy balance, the theoretical plate number was 13, the tower diameter was 600mm, height was 6658.7m, and the condenser, rebolier, preheater, pump were calculated and selected. The process flow diagram with control points and the workshop equipment layout were drawn. Key words: ethylbenzene packed distillation column process design 目 录 前 言 1 第一章 物料衡算 2 第1.1节 基本数据 2 第1.2 节 物料衡算 2 第1.3节 相对挥发度和温度的计算 4 第二章 能量衡算 8 第2.1节 基本数据 8 第2.2节 能量衡算 9 第三章 填料塔设计计算 13 第3.1节 全塔理论塔板数 13 第3.2节 精馏塔流量及物性参数 13 第3.3节 填料的选择 19 第3.4节 塔径设计计算 19 第3.5节 填料层高度的计算 21 第四章 附属设备及主要附件的选型计算 23 第4.1节 冷凝器 23 第4.2节 再沸器 23 第4.3节 预热器 24 第4.4节 塔管径的计算及选择 24 第4.5节 液体分布器 25 IV 第4.6节 支承板的选择 27 第4.7节 塔釜设计 27 第4.8节 除沫器 28 第4.9节 泵的设计及选型 28 第五章 经济分析 30 第七章 工艺流程设计 35 第八章 车间布置 36 第九章 “三废”处理与综合利用 37 结 论 38 参考文献 39 致 谢 41 V 前 言 苯乙烯是生产塑料和合成橡胶的重要基本有机原料,主要用于生产聚苯乙烯、ABS,也可用于制备丁苯橡胶、苯乙烯-顺丁烯-苯乙烯嵌段共聚物、不饱和聚物等,此外,也是生产涂料、染料、合成医药的重要原料。在苯乙烯生产中,通常是用苯和乙烯脱氢制得苯乙烯,在此过程中,会有副产物乙苯和多乙苯的产生[1]。多组分分离操作是目前在精馏过程中最重要的,操作简单,且只需要提供能量和冷却剂就能得到高纯度的产品,所以被广泛的应用[2]。使用填料精馏塔是分离乙苯和多乙苯是最适宜的分离方法。 第一章 物料衡算 第1.1节 基本数据 查《石油化工数据手册》[3]和《石油化工数据手册续篇》[4] 表1.1 基本物性数据 名称 分子式 相对分子质量(g/mol) 沸点(℃) 乙苯 C6H5C2H5 106.16 136.2 二乙苯 C10H14 134.22 181 二苯基乙烷 C13H12 182.27 264.5 二苯基甲烷 C14H14 168.24 284 表1.2 原料中成分的质量分数 名称 乙苯 二乙苯 二苯基乙烷 二苯基甲烷 质量分数% 90 8.7 0.975 0.3255 第1.2 节 物料衡算 图1.1 填料塔物料衡算 1.2.1原料中各成份的摩尔分数 表1.3 摩尔分数 名称 乙苯 二乙苯 二苯基乙烷 二苯基甲烷 摩尔分数 0.9216 0.0705 0.005815 0.002085 1.2.2原料液流量F 1.2.3塔顶乙苯的摩尔分数 塔顶乙苯的质量分数为99.6%,二乙苯的质量分数为0.4% 1.2.4塔釜乙苯的摩尔分数 塔釜的主要成分为乙苯为2.5%(质量分数),二乙苯84.83%,二苯基甲烷3.17%,二苯基乙烷9.51%。 则: 1.2.5塔顶产品流量D和塔釜产品流量W 总物料衡算 F=D+W 由F=W+D (1•1) (1•2) 则W=3.1766kmol/h D=37.4745kmol/h 表1.4 物料衡算数据结果 组分 进料 塔顶 塔釜 kmol/h xF kmol/h xD kmol/h xW 乙苯 37.4641 0.9216 37.3546 0.9968 0.1032 0.0325 二乙苯 2.8659 0.0705 0.1199 0.0032 2.7722 0.8727 二苯基甲烷 0.2364 0.005815 —— —— 0.0829 0.0261 二苯基乙烷 0.08476 0.002085 —— —— 0.2182 0.0687 总计 40.6511 1 37.4745 1 3.1766 1 第1.3节 相对挥发度和温度的计算 1.3.1相对挥发度的计算(关键组分法) 以总压为101.3kpa,查《石油化工数据手册》[3]和《石油化工数据手册续篇》[4]。 表1.5 乙苯(A)与二乙苯(B)的饱和蒸汽与温度的数据关系 温度t/℃ pA/kpa PB/kpa 温度t/℃ pA/kpa PB/kpa 110 47.375 10.457 150 144.787 40.540 120 64.216 15.141 160 184.413 54.277 130 85.544 21.444 170 232.034 71.519 140 112.12 29.762 180 288.675 98.450 将体系视为乙苯-二乙苯的双组份理想体系 所以,由此求得140、150、160、170、180摄氏度下的相对挥发度。 表1.6 各温度下的挥发度 温度/℃ 140 150 160 170 180 α 3.7672 3.5715 3.3976 3.2444 2.9322 平均相对挥发度: 泡点进料q=1, 由平衡方程 (1•3) 计算得 最小回流 (1•4) 取回流比为最小的回流比的2倍,即 1.3.2操作线方程的确定 (1•5) (1•6) (1•7) 即精馏段操作线方程: (1•8) 提馏段方程: (1•9) 1.3.3填料塔温度的计算 (1)填料塔进料的温度 填料塔在常压进行,P=1.01kPa查《石油化工数据手册》[3]和《石油化工数据手册续篇》[4]用内插法求得特定温度下的压力。 设进料温度为139℃ 温度与饱和蒸汽压关系见表表1.5。 混合溶液可视为理想液体,气液相平衡遵从拉乌尔定律 又因 (1•10) (1•11) 而且 (1•12) 则 (1•13) 同理求得 (1•14) 因为 所以进料温度为139℃时符合进料要求。 得tF=139℃ (2) 填料塔塔顶的温度 填料塔在常压进行,P=1.01kPa查《石油化工数据手册》[3]和《石油化工数据手册续篇》[4]用内插法求得特定温度下的压力。 设进料温度为139℃ 温度与饱和蒸汽压关系见表表1.5。 混合溶液可视为理想液体,气液相平衡遵从拉乌尔定律 又因 (1•15) (1•16) 而且 (1•17) 则 (1•18) 同理求得 (1•19) 因为 所以塔顶温度为137℃时符合进料要求。 得tD=139℃ (3) 填料塔塔釜的温度 同理 tW=180℃ 第二章 能量衡算 第2.1节 基本数据 查《石油化工数据手册》[3]和《石油化工数据手册续篇》[4] 表2.1 不同温度下的摩尔比热容 温度/℃ 130 140 150 160 170 180 190 CP乙苯/KJ/kmol℃ 225.75 229.69 233.69 237.72 241.75 245.87 250.02 CP二乙苯/KJ/kmol℃ 295.90 300.86 305.68 310.62 305.53 320.58 325.66 CP二苯基甲烷/KJ/kmol℃ 310.66 315.73 320.75 325.77 330.70 335.60 335.59 CP二苯基乙烷/KJ/kmol℃ 340.65 347.13 353.46 359.75 365.89 371.94 378.00 2.1.1进料摩尔热容 进料方式为泡点进料q=1,xq=xF,进料温度tf=139℃ Cp乙苯=228.1968KJ/kmol℃ 同理Cp二乙苯=300.3100KJ/kmol℃ Cp二苯基甲烷=315.567KJ/kmol℃ Cp二苯基乙烷=342.786KJ/kmol℃ 2.1.2塔顶摩尔热容 塔顶温度 tD=137℃ 同理Cp乙苯228.5136KJ/kmol℃ Cp二乙苯=299.3300KJ/kmol℃ Cp二苯基甲烷=314.567KJ/kmol℃ Cp二苯基乙烷=346.86KJ/kmol℃ 2.1.2塔釜摩尔热容 塔釜温度 tW=180℃ 同理Cp乙苯245.8680KJ/kmol℃ Cp二乙苯=320.5000KJ/kmol℃ Cp二苯基甲烷=335.599KJ/kmol℃ Cp二苯基乙烷=371.94KJ/kmol℃ 表2.2 精馏塔内特殊温度下的摩尔热容 温度/℃ 137 139 180 CP乙苯/KJ/kmol℃ 228.5136 228.1968 245.8680 CP二乙苯/KJ/kmol℃ 299.3300 300.3100 320.5000 CP二苯基甲烷/KJ/kmol℃ 315.567 314.567 335.599 CP二苯基乙烷/KJ/kmol℃ 342.786 346.86 371.94 第2.2节 能量衡算 图2.1 填料塔能量衡算 2.2.1进料液热量QF 进料温度为tF=139℃ 原料液平均摩尔比热容: (2•1) 原料液的焓: (2•2) 原料液带入的热量: (2•3) 2.2.2塔顶蒸汽带出的热量QV 塔顶温度为tD=137℃ 塔顶料液平均摩尔比热容: (2•4) 塔顶料液的焓: (2•5) 回流液带入的热量QL:(泡点回流) (2•6) (2•7) 塔顶蒸汽的焓(r为汽化热) (2•8) 塔顶蒸汽带出的热量 (2•9) 2.2.3塔底产品带出的热量QW 塔釜温度为tw=180℃ 釜液平均摩尔比热容: (2•10) 釜液的焓: (2•11) 釜液带出去的热量: (2•12) 2.2.4塔釜再沸器热负荷QB 精馏塔热损失Qn可由热传递速率方程计算,一般估算为 (2•13) (2•14) 绝对压力2320.9Kpa下水蒸气的最高温度为220℃。 再沸器内用220℃水蒸汽加热,查《石油化工数据手册》[3]此条件下220℃的水的潜热为: 水蒸汽用量 (2•15) 2.2.5塔顶冷凝器的热量QC 塔顶馏出液的热量: (2•16) 冷凝器的热量: (2•17) 冷凝水的进入温度为20出口温度为50 查《化工原理》[5],水在20-50的平均比热容为 冷凝水的用量: (2•18) 表2.3 能量衡算结果数据 组分 进料 塔顶 塔釜 kJl/h xF kJl/h xD kJl/h xW 乙苯 1219861.06 0.9216 4520238.53 0.9968 4311.3687 0.0325 二乙苯 93316.1873 0.0705 14511.1991 0.0032 115770.179 0.8727 二苯基甲烷 7696.9301 0.005815 —— —— 3462.3601 0.0261 二苯基乙烷 2759.7767 0.002085 —— —— 9113.5686 0.0687 总计 1323633.86 1 4534749.73 1 132657.4764 1 41 第三章 填料塔设计计算 第3.1节 全塔理论塔板数 3.1.1全塔理论塔板数 理论塔板数采用简捷法计算,用芬斯克公式计算出最少理论板数Nmin (3•1) (3•2) 由吉利兰图查的 (3•3) 解得 N=13(不包括再沸器) 3.1.2精馏塔理论塔板数 (3•4) 由吉利兰图查的 (3•5) 解得 N=6(不包括再沸器) 第3.2节 精馏塔流量及物性参数 3.2.1 基本数据 查《石油化工数据手册》[3]和《石油化工数据手册续篇》[4] 表3.1 塔顶塔釜进料黏度 mPa•s 塔顶137℃ 塔釜180℃ 进料139℃ 乙苯 0.2308 0.1790 0.2276 二乙苯 0.2768 0.2180 0.2716 二苯基甲烷 0.704 0.481 0.708 二苯基乙烷 0.542 0.408 0.539 表3.2 塔顶塔釜进料密度 Kg/m3 塔顶137℃ 塔釜180℃ 进料139℃ 乙苯 747.8 715.1 745.3 二乙苯 726.1 723.2 732.0 二苯基甲烷 0.9217 879.2 0.9127 二苯基乙烷 0.9322 865.6 0.8968 3.2.2 塔顶条件下的流量及物性参数 气相平均相对分子质量: (3•6) 液相平均相对分子质量: (3•7) 气相密度: (3•8) 液相密度: tD=137℃,ρ乙苯=747.8kg/m3,ρ二乙苯=721.6kg/m3 (3•9) 所以 液相黏度: tD=137℃,μ乙苯=0.2308mPa•s,μ二乙苯=0.2768mPa•s μLD=μ乙苯x乙苯+μ二乙苯(1-x乙苯)=0.2308×0.996+0.2768×(1-0.996) =0.2310mPa•s (3•10) 塔顶出料口质量流量: D=37.4745×106.2722=3982.4976kg/h (3•11) 表3.3 塔顶数据结果 符号 流量D 质量流量kg•h-1 摩尔流量kmol•h-1 数值 106.2722 106.2722 3.1596 747.7106 0.2310 294.4880 37.4745 3.2.3 塔底条件下的流量及物性参数 气相平均相对分子质量: (3•12) 液相平均相对分子质量: (3•13) 气相密度: (3•14) 液相密度: Tw=180℃,视为纯二乙苯,ρLW=ρ二乙苯=723.2kg/m3 液相黏度: tW=180℃,μ乙苯=0.1790mPa•s,μLD=μ二乙苯=0.218mPa•s (3•15) 塔底出料口质量流量: W=3.1766×136.8993=434.8743kg/h (3•16) 表3.4 塔底数据结果 符号 流量W 质量流量kg•h-1 摩尔流量kmol•h-1 数值 136.8993 136.8993 3.6839 723.200 0.2366 434.8743 3.1766 3.2.4 进料条件下的流量及物性参数 气相平均相对分子质量: (3•17) 液相平均相对分子质量: (3•18) 气相密度: (3•19) 液相密度: tF=139℃,ρ乙苯=745.3kg/m3,ρ二乙苯=732.0kg/m3 (3•20) 所以ρLF=743.9483kg/m3 液相黏度: tF=139℃,μ乙苯=0.2276mPa•s,μ二乙苯=0.2716mPa•s,μ二苯基甲烷=0.808mPa•s, μ二苯基乙烷=0.539mPa•s μLF=μ乙苯x乙苯+μ二乙苯X二乙苯+μ二苯基甲烷X二苯基甲烷+μ二苯基乙烷X二苯基乙烷 =0.2276×0.9216+0.2716×0.0705+0.808×0.005815+0.539×0.002085 =0.2320mPa•s (3•21) 进料质量流量: (3•22) 表3.5 进料数据结果 符号 流量F 质量流量kg•h-1 摩尔流量kmol•h-1 数值 108.7102 108.7102 3.2164 743.948 0.2320 4419.1919 40.6511 3.2.5 精馏段的流量及物性参数 气相平均相对分子质量: (3•23) 液相平均相对分子质量: (3•24) 液相密度: (3•25) 气相密度: (3•26) 液相黏度: (3•27) 气相流量: V=(R+1)D=(0.7955+1)×37.4745=67.2855kmol/h (3•28) V'=67.2855×107.4843=7232.1349kg/h (3•29) 液相流量: L=RD=0.7955×37.4745=29.8109kmol/h (3•30) L'=29.8109×107.4843=3204.2037kg/h (3•31) 3.2.6 提馏段的流量及物性参数 气相平均相对分子质量: (3•32) 液相平均相对分子质量: (3•33) 液相密度: (3•34) 气相密度: (3•35) 液相黏度: (3•36) 气相流量: V=V-(q-1)F=V=67.2855kmol/h (3•37) V'=67.2855×121.9932=8208.3735kg/h (3•38) 液相流量: L=L+qF=L+F=29.8109+40.6511=70.4620kmol/h (3•39) L'=70.4620×121.9932=8595.8849kg/h (3•40) 精馏段、提馏段数据结果见表3.6。 表3.6 精馏段、提馏段数据结果 精馏段 提馏段 气相平均相对分子质量 107.4843 121.9932 液相平均相对分子质量 107.4843 121.9932 气相密度 ρV/kg/m3 3.1879 3.4422 液相密度 ρL/kg/m3 745.8271 733.5008 气相摩尔流量 kmol/h 67.2855 67.2855 气相质量流量 kg/h 8026.8237 8208.3735 液相黏度 mPa•S 0.2315 0.2343 液相摩尔质量 kmol/h 29.8109 70.4620 液相质量流量 kg/h 3204.2037 8595.8849 第3.3节 填料的选择 填料是填料塔的核心构件,它提供了气、液两相相接触传质与传热的表面,与塔内件一起决定了填料塔的性质。目前,填料的开发与应用仍是沿着散装填料与规整填料两个方面进行[6]。 本设计选用规整填料,金属板波纹250Y型填料。 规整填料是一种在塔内安装均匀图形排布、整齐堆砌的填料,规定了气、液流路,改善了沟流和壁流现象,压降可以很小,同时还可以提供更大的比表面积,在同等溶剂中可以达到更高的传质、传热效果。 与散装填料相比,规整填料结构均匀、规则、有对称性,当与散装填料有相同的比表面积时,填料空隙率更大,具有更大的通量,单位分离能力大。 250Y型波纹填料是最早研制并应用于工厂中的板波填料,它具有以下特点: 1、 比表面积与通用板式塔相比,可提高近1倍,填料压降较低,通量和传质效率均有较大幅度的提高。 2、 与各种板式塔相比,不仅传质面积大幅度提高,而且全塔压降及效率有很大改善。 3、 工业生产中气液质均可能带入“第三相”物质,导致散装填料及某些板式塔无法维持操作。鉴于250Y型填料整齐的几何机构,显示出良好的抗堵性能,因而能在某些散装填料塔不适宜的场合使用,扩大了填料塔的应用范围。 鉴于以上250Y型的特点,本设计采用Mellapok-250Y型填料[7]。 第3.4节 塔径设计计算 3.4.1 精馏段塔径计算 由贝恩-霍根关联式: (3•41) 式中——干填料因子; ——液体黏度,mPa•S; A——250Y型为0.291; L、G——液体、气体质量流速,kg/s; ρL、ρV——液体、气体密度,kg/m3; g——重力加速度,m/s2。 精馏段: ρL=745.8271kg/m3,ρG=3.1879kg/m3,μL=0.2315mPa•s,L=3204.2037kg/h, G=8026.8237kg/m,A=0.291 代入式中求解得:uf=7.5213m/s 空气塔速: (3•42) ℃ (3•43) 体积流量: (3•44) (3•45) 圆整后,D=600mm,空塔气速uf=0.639m/s 3.4.2 提馏段塔径计算 由贝恩-霍根关联式: (3•46) 式中——干填料因子; ——液体黏度,mPa•S; A——250Y型为0.291; L、G——液体、气体质量流速,kg/s; ρL、ρV——液体、气体密度,kg/m3 g——重力加速度,m/s 提馏段: ρG=3.4422kg/m3,ρL=733.5008kg/m3,L=8595.8849kg/h,G=8208.3735kg/m 代入式中求解得:uf1=1.5335m/s 空气塔速: (3•47) ℃ (3•48) 体积流量: (3•49) (3•50) 圆整后,D=600mm,空塔气速uf=0.6285m/s 3.4.3 选取整塔塔径 精馏段和提馏段塔径圆整后D=600mm,为精馏塔塔径。 第3.5节 填料层高度的计算 3.5.1 精馏段填料层高度计算 uV=0.6391m/s,ρV=3.1879kg/m3, 所以: (3•51) 查《塔填料产品及技术手册》[8]得: 查《化工原理课程设计》[9]对于规整填料: HETP=h/(15~20),250Y板波纹填料h=6.0m,取系数为15, 得HETP=0.4m 精馏段填料层高度: (3•52) 精馏段总压降: (3•53) 3.5.2 提馏段填料层高度计算 uG=0.6285m/s,ρV=3.4422kg/m3, 所以: (3•54) 查《塔填料产品及技术手册》[8]得: 查《化工原理课程设计》[9]对于规整填料: HETP=h/(15~20),250Y板波纹填料h=6.0m,取系数为15, 得HETP=0.4m 精馏段填料层高度: (3•55) 精馏段总压降: (3•56) 3.5.3 全塔填料层压降 (3•57) 3.5.4 全塔填料层高度 (3•58) 表3.7 填料层高度和压降计算汇总 参数 精馏段 提馏段 全塔 气动因子/(m/s)(kg/m2)0.5 1.2002 1.2785 — 压降 1.2300×102 1.1700×102 2.400×102 总压降/Pa 2.9520×102 3.2760×102 6.2280×102 填料层高度/m 2.4000 3.2667 5.6667 第四章 附属设备及主要附件的选型计算 第4.1节 冷凝器 查《化工原理课程设计》[9]有机物蒸汽冷凝器设计选用的总体传热系数一般范围为500~1500kcal/(m2•h •℃) 取K=550kcal/(m2•h•℃)=2301.2KJ/(m2•h•℃) 出料液温度:137℃(饱和气)→137℃(饱和液) 冷却水温度:20℃→50℃ 逆流操作:Δt1=87℃,Δt2=117℃ ℃
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服