收藏 分销(赏)

初中七年级下册实数数学附答案(一)解析.doc

上传人:人****来 文档编号:5409934 上传时间:2024-10-31 格式:DOC 页数:25 大小:1,002.54KB 下载积分:10 金币
下载 相关 举报
初中七年级下册实数数学附答案(一)解析.doc_第1页
第1页 / 共25页
初中七年级下册实数数学附答案(一)解析.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
一、选择题 1.已知表示取三个数中最小的那个数.例如:当时,,当时,则的值为( ) A. B. C. D. 2.按如图所示的程序计算,若开始输入的值为25,则最后输出的y值是( ) A. B. C.5 D. 3.若,|y|=7,且,则x+y的值为(  ) A.﹣4或10 B.﹣4或﹣10 C.4或10 D.4或﹣10 4.下列命题是真命题的有( )个 ①两个无理数的和可能是无理数; ②两条直线被第三条直线所截,同位角相等; ③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A.2 B.3 C.4 D.5 5.数轴上A,B,C,D四点中,两点之间的距离最接近于的是(  ) A.点C和点D B.点B和点C C.点A和点C D.点A和点B 6.如图,在数轴上表示的对应点分别为,点关于点的对称点为,则点表示的数为( ) A. B. C. D. 7.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为( ) A.3 B.-3 C.±3 D.±9 8.如图,点表示的数可能是( ) A. B. C. D. 9.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为(  ) A.﹣40 B.﹣32 C.18 D.10 10.规定:f(x)=|x﹣2|,g(y)=|y+3|,例如f(﹣4)=|﹣4﹣2|=6,g(﹣4)=|﹣4+3|=1.下列结论正确的个数是(  ) ①若x=2,y=3,则f(x)+g(y)=6; ②若f(x)+g(x)=0,则2x﹣3y=13; ③若x<﹣3,则f(x)+g(x)=﹣1﹣2x; ④能使f(x)=g(x)成立的x的值不存在. A.1个 B.2个 C.3个 D.4个 二、填空题 11.已知的小数部分是,的小数部分是,则________. 12.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____. 13.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+的结果是_____. 14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____. 15.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____. 16.对于实数x,y,定义一种运算“×”如下,x×y=ax-by2,已知2×3=10,4×(-3)=6,那么(-2)×()2=________; 17.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______. 18.若,其中,均为整数,则符合题意的有序数对的组数是______. 19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是_____.若点B表示,则点B在点A的______边(填“左”或“右”). 20.若表示大于x的最小整数,如,,则下列结论中正确的有______(填写所有正确结论的序号). ①;②;③;④;⑤存在有理数x使成立. 三、解答题 21.观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数为“白马有理数对”,记为,如:数对都是“白马有理数对”. (1)数对中是“白马有理数对”的是_________; (2)若是“白马有理数对”,求的值; (3)若是“白马有理数对”,则是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复) 22.在已有运算的基础上定义一种新运算:,的运算级别高于加减乘除运算,即的运算顺序要优先于运算,试根据条件回答下列问题. (1)计算: ; (2)若,则 ; (3)在数轴上,数的位置如下图所示,试化简:; (4)如图所示,在数轴上,点分别以1个单位每秒的速度从表示数-1和3的点开始运动,点向正方向运动,点向负方向运动,秒后点分别运动到表示数和的点所在的位置,当时,求的值. 23.观察下面的变形规律: ;;;…. 解答下面的问题: (1)仿照上面的格式请写出=   ; (2)若n为正整数,请你猜想=   ; (3)基础应用:计算:. (4)拓展应用1:解方程: =2016 (5)拓展应用2:计算:. 24.定义:如果,那么称b为n的布谷数,记为. 例如:因为,所以, 因为, 所以. (1)根据布谷数的定义填空:g(2)=________________,g(32)=___________________. (2)布谷数有如下运算性质: 若m,n为正整数,则,. 根据运算性质解答下列各题: ①已知,求和的值; ②已知.求和的值. 25.(概念学习) 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”. (初步探究) (1)直接写出计算结果:2③=   ,(﹣)⑤=   ; (深入思考) 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式. (﹣3)④=   ;5⑥=   ;(﹣)⑩=   . (2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于   ; 26.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把 (a≠0)记作aⓝ,读作“a的圈 n次方”. (初步探究) (1)直接写出计算结果:2③=___,()⑤=___; (2)关于除方,下列说法错误的是___ A.任何非零数的圈2次方都等于1;           B.对于任何正整数n,1ⓝ=1; C.3④=4③;   D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考) 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-)⑩=___. (2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___; (3)算一算:÷(−)④×(−2)⑤−(−)⑥÷ 27.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A、B两点表示的数分别为___________,____________; (2)请你参照上面的方法: ①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙) ②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长) 28.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试: (1)由,因为,请确定是______位数; (2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________; (3)已知和分别是两个数的立方,仿照上面的计算过程,请计算:;. 29.阅读下面文字: 对于 可以如下计算: 原式 上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1) (2) 30.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c. 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空: (3,27)=_______,(5,1)=_______,(2, )=_______. (2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明: 设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n 所以3x=4,即(3,4)=x, 所以(3n,4n)=(3,4). 请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.C 解析:C 【分析】 本题分别计算的x值,找到满足条件的x值即可. 【详解】 解:当时,,,不合题意; 当时,,当时,,不合题意; 当时,,,符合题意; 当时,,,不合题意, 故选:C. 【点睛】 本题主要考查了实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用. 2.B 解析:B 【分析】 根据已知进行计算,并判断每一步输出结果即可得到答案. 【详解】 解:∵25的算术平方根是5,5不是无理数, ∴再取5的平方根,而5的平方根为,是无理数, ∴输出值y=, 故选:B. 【点睛】 本题考查实数分类及计算,判断每步计算结果是否为无理数是解题的关键. 3.B 解析:B 【分析】 先根据平方根、绝对值运算求出的值,再代入求值即可得. 【详解】 解:由得:, 由得:, , , 或, 则或, 故选:B. 【点睛】 本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键. 4.B 解析:B 【分析】 分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可. 【详解】 解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题; ②两条直线被第三条直线所截,同位角不一定相等,故②是假命题; ③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题; ④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题; ⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题. 故选:B 【点睛】 本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大. 5.A 解析:A 【分析】 先估算出的范围,结合数轴可得答案. 【详解】 解:∵4<6<9, ∴2<<3, ∴两点之间的距离最接近于的是点C和点D. 故选:A. 【点睛】 本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键. 6.C 解析:C 【分析】 首先根据表示1、的对应点分别为点A、点B可以求出线段AB的长度,然后根据点B和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标. 【详解】 解:∵表示1、的对应点分别为点A、点B, ∴AB=−1, ∵点B关于点A的对称点为点C, ∴CA=AB, ∴点C的坐标为:1−(−1)=2−. 故选:C. 【点睛】 本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离. 7.C 解析:C 【分析】 根据操作步骤列出方程,然后根据平方根的定义计算即可得解. 【详解】 由题意得:, ∴, ∵, ∴, 故选:C. 【点睛】 此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 8.C 解析:C 【分析】 先确定点A表示的数在3、4之间,再根据夹逼法逐项判断即得答案. 【详解】 解:点A表示的数在3、4之间, A、因为,所以,故本选项不符合题意; B、因为,所以,故本选项不符合题意; C、因为,所以,故本选项符合题意; D、因为,所以,故本选项不符合题意; 故选:C. 【点睛】 本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键. 9.D 解析:D 【分析】 直接利用题中的新定义给出的运算公式计算得出答案. 【详解】 解:(-5)※4=(﹣5)2﹣42+1=10. 故选:D. 【点睛】 本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键. 10.C 解析:C 【分析】 ①根据公式代入计算即可判断;②根据绝对值的非负性求出x及y的值,再代入计算进行判断;③根据公式利用绝对值的性质化简后计算即可判断;④根据公式解绝对值方程即可判断. 【详解】 解:①∵x=2,y=3, ∴f(x)+g(y) =f(2)+g(3) =|2﹣2|+|3+3| =0+6 =6;故正确,符合题意; ②∵f(x)+g(y)=|x﹣2|+|y+3|=0, ∴x﹣2=0,y+3=0, ∴x=2,y=﹣3, ∴2x﹣3y =2×2﹣3×(﹣3) =13,故正确,符合题意; ③若x<﹣3,则f(x)+g(x) =|x﹣2|+|x+3| =2﹣x﹣x﹣3 =﹣1﹣2x,故正确,符合题意; ④若f(x)=g(x),则|x﹣2|=|x+3|, 即x﹣2=x+3或x﹣2=﹣x﹣3, 解得:x=﹣0.5,即能使已知等式成立的x的值存在,故错误,不符合题意; 故选:C. 【点睛】 此题考查有理数混合运算法则,绝对值的非负性,解一元一次方程,正确理解计算公式是解题的关键. 二、填空题 11.1 【分析】 根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果. 【详解】 解析:1 【分析】 根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果. 【详解】 解:∵4<7<9, ∴2<<3,∴-3<-<-2, ∴7<5+<8,2<5-<3, ∴5+的整数部分是7,5-的整数部分为2, ∴a=5+-7=-2,b=5--2=3-, ∴12019=1. 故答案为:1. 【点睛】 此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键. 12.-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+ 解析:-1. 【分析】 根据多项式的乘法得出字母的值,进而代入解答即可. 【详解】 解:(x+1)5=x5+5x4+10x3+10x2+5x+1, ∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5, ∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1, 把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中, 可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1, 故答案为:﹣1 【点睛】 本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 13.﹣2b 【详解】 由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b. 故答案为﹣2b. 点睛:本题主要考查了二次根式和绝对 解析:﹣2b 【详解】 由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b. 故答案为﹣2b. 点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换. 14.5 【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5. 故答案为:5. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5 【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5. 故答案为:5. 点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 15.7 【分析】 本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论 解析:7 【分析】 本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论. 【详解】 解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…, ∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环, ∴a1-a2+a3-a4+…+a13-a14=0, ∵2015=2016-1=144×14-1, ∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7. 故答案为7. 【点睛】 本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0来解决问题. 16.130 【解析】 【分析】已知等式利用题中的新定义化简,求出a与b的值,即可确定出原式的值. 【详解】根据题中的新定义得: 解得 , 所以, = =130 故答案为:130 【点睛】本 解析:130 【解析】 【分析】已知等式利用题中的新定义化简,求出a与b的值,即可确定出原式的值. 【详解】根据题中的新定义得: 解得 , 所以, = =130 故答案为:130 【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b的值,再次应用规则,求出式子的值. 17.﹣8π. 【分析】 根据每次滚动后,所对应数的绝对值进行解答即可. 【详解】 解:半径为1圆的周长为2π, 滚动第1次,所对应的周数为0﹣3=﹣3(周), 滚动第2次,所对应的周数为0﹣3﹣1=﹣4 解析:﹣8π. 【分析】 根据每次滚动后,所对应数的绝对值进行解答即可. 【详解】 解:半径为1圆的周长为2π, 滚动第1次,所对应的周数为0﹣3=﹣3(周), 滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周), 滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周), 滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周), 滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周), 滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周), 所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π. 【点睛】 题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键. 18.5 【分析】 由绝对值和算术平方根的非负性,求出a、b所有的可能值,即可得到答案. 【详解】 解:∵,且,均为整数, 又∵,, ∴可分为以下几种情况: ①,, 解得:,; ②,, 解得:或,; ③, 解析:5 【分析】 由绝对值和算术平方根的非负性,求出a、b所有的可能值,即可得到答案. 【详解】 解:∵,且,均为整数, 又∵,, ∴可分为以下几种情况: ①,, 解得:,; ②,, 解得:或,; ③, 解得:或,; ∴符合题意的有序数对共由5组; 故答案为:5. 【点睛】 本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题. 19.-π 右 【分析】 因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答. 【详解】 解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周, ∴OA之间的距离 解析:-π 右 【分析】 因为圆从原点沿数轴向左滚动一周,可知OA=π,再根据数轴的特点及π的值即可解答. 【详解】 解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周, ∴OA之间的距离为圆的周长=π,A点在原点的左边. ∴A点对应的数是-π. ∵π>3.14, ∴-π<-3.14. 故A点表示的数是-π.若点B表示-3.14,则点B在点A的右边. 故答案为:-π,右. 【点睛】 本题考查数轴、圆的周长公式、利用数轴比较数的大小.需记住两个负数比较大小,绝对值大的反而小. 20.①④⑤ 【分析】 根据题意表示大于x的最小整数,结合各项进行判断即可得出答案. 【详解】 解:①,根据表示大于x的最小整数,故正确; ②,应该等于,故错误; ③,当x=0.5时,,故错误; ④,根据 解析:①④⑤ 【分析】 根据题意表示大于x的最小整数,结合各项进行判断即可得出答案. 【详解】 解:①,根据表示大于x的最小整数,故正确; ②,应该等于,故错误; ③,当x=0.5时,,故错误; ④,根据定义可知,但不会超过x+1,所以成立,故正确; ⑤当x=0.8时,,故正确. 故答案为:①④⑤. 【点睛】 本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 三、解答题 21.(1);(2)2;(3)不是;(4)(6,) 【分析】 (1)根据“白马有理数对”的定义,把数对分别代入计算即可判断; (2)根据“白马有理数对”的定义,构建方程即可解决问题; (3)根据“白马有理数对”的定义即可判断; (4)根据“白马有理数对”的定义即可解决问题. 【详解】 (1)∵-2+1=-1,而-2×1-1=-3, ∴-2+1-3, ∴(-2,1)不是“白马有理数对”, ∵5+=,5×-1=, ∴5+=5×-1, ∴是“白马有理数对”, 故答案为:; (2)若是“白马有理数对”,则 a+3=3a-1, 解得:a=2, 故答案为:2; (3)若是“白马有理数对”,则m+n=mn-1, 那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1, ∵-mn+1 mn-1 ∴(-n,-m)不是“白马有理数对”, 故答案为:不是; (4)取m=6,则6+x=6x-1, ∴x=, ∴(6,)是“白马有理数对”, 故答案为:(6,). 【点睛】 本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键. 22.(1)5;(2)5或1;(3)1+y-2x;(4)t1=3;t2= 【分析】 (1)根据题中的新运算列出算式,计算即可得到结果; (2)根据题中的新运算列出方程,解方程即可得到结果; (3)根据题中的新运算列出代数式,根据数轴得出x、y的取值范围进行化简即可; (4)根据A、B在数轴上的移动方向和速度可分别用代数式表示出数和,再根据(2)的解题思路即可得到结果. 【详解】 解:(1); (2)依题意得:, 化简得:, 所以或, 解得:x=5或x=1; (3)由数轴可知:0<x<1,y<0, 所以 = = = (4)依题意得:数a=−1+t,b=3−t; 因为, 所以, 化简得:, 解得:t=3或t=, 所以当时,的值为3或. 【点睛】 本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键. 23.(1) ;(2) ;(3);(4)x=2017;(5) 【分析】 (1)类比题目中方法解答即可;(2)根据题目中所给的算式总结出规律,解答即可;(3)利用总结的规律把每个式子拆分后合并即可解答;(4)方程左边提取x后利用(3)的方法计算后,再解方程即可;(5)类比(3)的方法,拆项计算即可. 【详解】 (1) 故答案为:; (2)= 故答案为:; (3)计算: = =1﹣ =; (4) =2016 =2016, x=2017; (5). =+()+()+…+(). =(1﹣). =. 【点睛】 本题是数字规律探究题,解决问题基本思路是正确找出规律,根据所得的规律解决问题. 24.(1)1;5;(2)①3.807,0.807;②;. 【分析】 (1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案; (2)①根据布谷数的运算性质, g(14)=g(2×7)=g(2)+g(7),,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为,,再代入求解. 【详解】 解:(1)g(2)=g(21)=1, g(32)=g(25)=5; 故答案为1,32; (2)①g(14)=g(2×7)=g(2)+g(7), ∵g(7)=2.807,g(2)=1, ∴g(14)=3.807; g(4)=g(22)=2, ∴=g(7)-g(4)=2.807-2=0.807; 故答案为3.807,0.807; ②∵. ∴; . 【点睛】 本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键. 25.初步探究:(1),-8;深入思考:(1)(−)2,()4,;(2) 【分析】 初步探究:(1)分别按公式进行计算即可; 深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果; (2)结果前两个数相除为1,第三个数及后面的数变为,则; 【详解】 解:初步探究:(1)2③=2÷2÷2=, ; 深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−)2=(−)2; 5⑥=5÷5÷5÷5÷5÷5=()4; 同理可得:(﹣)⑩=; (2) 【点睛】 本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 26.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5. 【分析】 初步探究: (1)根据除方运算的定义即可得出答案; (2)根据除方运算的定义逐一判断即可得出答案; 深入思考: (1)根据除方运算的定义即可得出答案; (2)根据(1)即可总结出(2)中的规律; (3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案. 【详解】 解:初步探究: (1)2③=2÷2÷2= ()⑤= (2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误; B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误; C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确; D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误; 故答案选择:C. 深入思考: (1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=  5⑥=5÷5÷5÷5÷5÷5= (-)⑩= (2)aⓝ=a÷a÷a…÷a= (3)原式= = = =-5 【点睛】 本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键. 27.(1),;(2)①图见解析,;②见解析 【分析】 (1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数 (2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可; (3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N. 【详解】 (1)由图1知,小正方形的对角线长是, ∴图2中点A表示的数是,点B表示的数是, 故答案是:,; (2)①长方形的面积是5,拼成的正方形的面积也应该是5, ∴正方形的边长是, 如图所示: 故答案是:; ②如图所示: 【点睛】 本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解. 28.(1)两;(2)2,3;(3)24,﹣48; 【分析】 (1)由题意可得,进而可得答案; (2)由只有个位数是2的数的立方的个位数是8,可确定的个位上的数,由可得27<32<64,进而可确定,于是可确定的十位上的数,进而可得答案; (3)仿照(1)(2)两小题中的方法解答即可. 【详解】 解:(1)因为,所以, 所以是一个两位数; 故答案为:两; (2)因为只有个位数是2的数的立方的个位数是8, 所以的个位上的数是2, 划去32768后面的三位数768得到32,因为,27<32<64, 所以, 所以的十位上的数是3; 故答案为:2,3; (3)由103=1000,1003=1000000,1000<13824<1000000, ∴10<<100, ∴是两位数; ∵只有个位数是4的数的立方的个位数是4, ∴的个位上的数是4, 划去13824后面的三位数824得到13, ∵8<13<27,∴20<<30. ∴=24; 由103=1000,1003=1000000,1000<110592<1000000, ∴10<<100, ∴是两位数; ∵只有个位数是8的数的立方的个位数是2, ∴的个位上的数是8, 划去110592后面的三位数592得到110, ∵64<110<125, ∴40<<50, ∴; ∴=﹣48. 【点睛】 本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键. 29.(1)(2) 【分析】 (1)根据例子将每项的整数部分相加,分数部分相加即可解答; (2)根据例子将每项的整数部分相加,分数部分相加即可解答. 【详解】 (1) (2)原式 【点睛】 此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算. 30.(1)3,0,-2 (2) (4,30) 【解析】 分析:(1)根据阅读材料,应用规定的运算方式计算即可; (2)应用规定和同底数幂相乘的性质逆用变形计算即可. 详解:(1)∵33=27 ∴(3,27)=3 ∵50=1 ∴(5,1)=1 ∵2-2= ∴(2,)=-2 (2)设(4,5)=x,(4,6)=y 则,=6 ∴ ∴(4,30)=x+y ∴(4,5)+(4,6)=(4,30) 点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服