1、 太阳能屋顶并网发电方案(3kW)成都西德光能光电股份有限公司2015年10月10日目录一、前言3二、太阳能环境分析6三、太阳能发电系统技术6(一)太阳能发电技术简介7(二)标准型太阳能发电系统8(三)离网型太阳能发电系统架构10四、小型并网太阳能发电系统设计11(一)、小型并网太阳能发电系统的构成111、客户对系统的要求112、系统方案11(二)太阳能电池板与太阳能电池模组的选择121、太阳能电池板串联132、采用3.6kW并网型逆变器构成3kW系统13(三)分布式直流配电箱设计14(四)并网型光伏逆变器设计与选用15(五)交流配电箱设计17(六)、防雷设计18(七)、工程用材料18(八)、
2、设备总表181、3kWp太阳能系统前端设备总表18五、屋顶并网太阳能发电系统发电量估算20一、前言全球问题是气候问题,但对中国来说,常规的污染是主要问题。从美国能源部对全世界各国能源消耗及污染物排放统计,截至2006年,中国发电总装机容量及总电耗已经达到世界第二,GDP总量为世界第三,大气污染物排放已经接近第一的美国水平,单位GDP排放水平在世界前十大GDP国家中居首位,比法国、日本和美国分别高出10.2、5.5和3.5倍。随着中国加入京都协议签约,中国将于2012年开始承担排放对世界环境污染的义务。中国的GDP快速增长,能源消耗也不断快速增长,由于火力发电等煤燃烧,排放物对大气的污染越来越严
3、重,可能在近两年内成为世界第一大污染排放国,从最近的世界经济大国首脑峰会都会邀请中国参加,而且每次必谈环境问题来看,世界对中国的节能减排的压力不断增大,中国政府也不断出台节能减排的支持措施,甚至采取强制措施。最近出台对太阳能发电的财政补贴,太阳能与风能上网电价补贴政策,正在制定中的能源消费税政策等,都体现了对高污染能源的限制,对清洁能源开发利用的支持。中国政府为了支持和鼓励企业和民间大力发展新能源,出台了一系列政策。2005年,世行明确大于500瓦的光伏系统也可得到REDP项目补贴;在2005年9月的例行审查中,澄清了系统的补贴范围(详见REDP项目光伏系统销售赠款合格标准”的通知项目办 光伏
4、(2005)第006号)。根据世行对REDP项目的要求以及在过去一年对大系统补贴方面专家提出的意见,项目办对500瓦以上光伏系统的补贴规定(试行)进行了修改2006年1月1日 中华人民共和国可再生能源法正式实施2006年1月5日 国家发改委发布可再生能源发电价格和费用分摊管理试行办法、可再生能源发电有关管理规定2006年4月20日 国务院能源领导小组审议可再生能源中长期发展规划2006年5月30日 财政部下发可再生能源发展专项资金管理暂行办法2006年11月13日 国家发改委、财政部联合下发促进风电产业发展实施意见2009年,财政部将启动“金太阳示范工程”,用中央财政补贴光伏发电。资金来自“可
5、再生能源专项资金”,支持光伏发电技术在各类领域的示范应用及关键技术产业化,并形成规模化。按照财政部经济建设司的规划,预计在2-3年内,采取财政补助方式支持不低于500兆瓦的光伏发电示范项目。除了财政补贴,扶持方式还将有科技支持和市场拉动。原则上每省(含计划单列市)示范工程总规模不超过20兆瓦。据悉,对并网光伏发电项目,原则上按光伏发电系统及其配套输配电工程总投资的50给予补助;其中偏远无电地区的独立光伏发电系统按总投资的70给予补助;对于光伏发电关键技术产业化和基础能力建设项目,主要通过贴息和补助的方式给予支持。分析认为,这是继太阳能屋顶计划后,财政部再次出台光伏发电补贴计划。两者区别在于前者
6、主要针对家庭或企业自用但发电不上网,此次针对并网发电计划,也就是说今后家庭或企业自建太阳能并网发电项目,其上网的电价将得到50%的补贴,这将增加家庭或企业自建太阳能项目的主动性,对太阳能新能源企业构成不小的刺激,尤其是龙头企业的影响会更大。2009年,财政部、住房和城乡建设部出台了关于加快推进太阳能光电建筑应用的实施意见,意见中明确提出实施“太阳能屋顶计划”,对光电建筑应用示范工程予以资金补助、鼓励技术进步与科技创新、鼓励地方政府出台相关财政扶持政策、加强建设领域政策扶持等一系列原则措施。现阶段在经济发达、产业基础较好的大中城市积极推进太阳能屋顶、光伏幕墙等光电建筑一体化示范;积极支持在农村与
7、偏远地区发展离网式发电,实施送电下乡等有关规定,更是给太阳能技术的应用指明了方向。以太阳能屋顶、光伏幕墙等光电建筑一体化为突破口,可能在短期内让人们看到应用太阳能的诸多好处,也有利于今后大面积推广,激发产业资本投资太阳能领域的积极性。太阳屋顶政策限定示范项目必须大于50kW,即需要至少400平方米的安装面积,一般居民建筑很难参与,符合资格的业主将集中在学校、医院和政府等公用和商用建筑。考虑财政部补贴之后,度电成本可降至0.58元/kWh。光伏上网电价是否能在火电上网电价上给予溢价仍不明确,但即使没有溢价,由于发电成本低于电网销售电价,业主仍有动力建设光伏项目以发电自用,替代从电网购电。何况可以
8、期待地方政府给予额外的补贴政策,发电成本将进一步下降。考虑财政部补贴之后,度电成本可降至0.58元/kWh。光伏上网电价是否能在火电上网电价上给予溢价仍不明确,但即使没有溢价,由于发电成本低于电网销售电价,业主仍有动力建设光伏项目以发电自用,替代从电网购电。京都议定书形成了CDM(清洁发展机制)、JI(联合履行机制)及ET(国际排放交易机制)三种碳交易机制。虽然根据公平及“共同但有区别的责任”的原则,不限定发展中国家减排,允许发达国家之间互相转让交换排放量。碳交易市场前景广阔,有关专家预测,2012年全球碳交易市场有望超过石油市场成为全球第一大市场。据世界银行的预测,中国将占到2010年世界总
9、CDM(清洁发展机制)潜力的35%至45%。依据联合国的规定,发达国家及其企业使用现代技术帮助发展中国家通过投资风力或水力发电,或改造能源设施等以达到减少温室气体排放的目的,由此产生的碳减排额度允许互相转让,即可以通过一定的组织形式进行买卖。按照国际市场惯例,规定排放到大气中的每吨污染性气体或二氧化碳相当于一个“份额”,即为一个“碳信用”单位,每减少吨二氧化碳的排放量,就可获得等量排放权。公司如果没有用完分配给它们的“碳信用”,即可把剩余的额度卖给需要更多“碳信用”的企业。目前国际市场每个“碳信用”配额每吨CO2的转让价格通常为美元至美元。二、太阳能环境分析根据科学家测算,太阳照到地球上的能源
10、总量达到12000TW(12000百万兆瓦),实际可开采利用的也达到600TW,是世界上最大的能源来源。太阳能是取之不竭、用之不尽的、真正绿色环保的能源。太阳能的利用,正好与人们的工作时间相同,能源利用效率高,这就是为什么世界各国都在大力发展太阳能发电的根本原因。表1 宁夏主要城市的辐射参数表三、太阳能发电系统技术太阳能发电系统,就是利用太阳能的光能或热能转化为电能的电力系统。(一)太阳能发电技术简介目前世界上太阳能转换成电能的方式主要有三种:1、利用太阳能的光能,通过半导体的太阳能电池板,直接转化成电能,是太阳能发电系统的主要方式;2、利用太阳能的热能,将水加热成高温高压的水蒸气,再利用汽轮
11、机,将高温高压的水蒸气转化为机械能,带动发电机发电;3、利用太阳能的热能,通过烟囱形成的热对流原理,形成高速气流,推动风力发电机转化成电能。本章主要讨论直接利用太阳能电池板,将太阳能光能直接转化成电能的技术。太阳能发电(光伏发电)技术有以下一些方式:1、标准型太阳能发电系统:采用单晶硅或多晶硅电池板,固定朝向正午太阳能方向安装,直接将太阳的光能转换成直流电能,标准型发电系统的发电效率通常在14%18%;2、太阳能自动跟踪的标准型太阳能发电系统:采用单晶硅或多晶硅电池板,通过能自动朝向太阳能方向的塔架安装,直接将太阳的光能转换成直流电能,自动跟踪系统的发电效率通常在16%20%;3聚光型太阳能发
12、电系统:采用在太阳能电池板前加装聚光镜,以加强太阳光能的强度,从而提高太阳能发电效率,减少硅片的使用量,聚光型太阳能发电通常采用自动跟踪系统,聚光型发电系统发电效率通常在20%25%;4、透光型太阳能电池板发电系统:采用单晶硅或多晶硅电池板,能部分透光,适合建筑物顶部作为屋顶,发电同时还可以减少室内照明用电需求,透光型发电系统一般效率在10%左右;5、透视型太阳能电池板发电系统:在玻璃内添加硅电池材料,使玻璃既能发电又能透视,通常适合于太阳能玻璃幕墙,透视型发电系统一般效率在5%6%左右; 6、薄膜型太阳能电池板发电系统:将太阳能电池板做成薄膜,用于覆盖在建筑物外表,用于发电,薄膜型太阳能发电
13、系统一般效率在3%8%左右。考虑到相对较低的投入来发电,一般在场地比较廉价时,对外观设计要求不高,通常采用标准型太阳能发电系统。(二)标准型太阳能发电系统标准型太阳能发电系统依据输出供电模式,通常分为并网型和离网型两种,如下图所示:太陽電池組列充電控制器放電控制器蓄電池交流負載- / PCU离网型独立AC输出供电系统离网型独立AC输出供电系统主要是为没有交流市电的地区,且没有配备后备柴油发电机的,允许交流供电中断的用户,如西部农村区域,仅考虑照明、电视等家用电器。太阳能板白天将阳光转化为直流电力,给蓄电池充电储能,当需要用电时,逆变器将蓄电池的电力转化为220V交流电供负载;当蓄电池的电量放光
14、后,自动停止供电。太陽電池組列充電控制器放電控制器蓄電池交流負載直/交流轉換器整流器輔助發電機PCU离网型混合AC供电系统离网型混合AC输出供电系统也主要是为没有交流市电的地区,配备有后备柴油发电机的,允许交流供电短时中断的用户,如西部农村区域、海岛、通信基站等,可考虑家用电器、较重要的设备供电。太阳能板白天将阳光转化为直流电力,给蓄电池充电储能,当需要用电时,逆变器将蓄电池的电力转化为220V交流电供负载;当蓄电池的电量放光前,自动启动辅助发电机组供电,同时给蓄电池再次充电,此供电系统可在保证短时间间断的供电基础上,最大化使用太阳能供电,降低辅助发电机的燃油消耗。离网型主备用AC供电系统离网
15、型主备用AC输出供电系统主要是为具有交流市电、且供电状况不是十分好的地区,且没有配备后备柴油发电机的,允许交流供电短时中断的用户,由太阳能发电系统和交流市电供电,如农村区域、通信基站等,可考虑家用电器、较重要的设备供电。太阳能板白天将阳光转化为直流电力,给蓄电池充电储能,当需要用电时,逆变器将蓄电池的电力转化为220V交流电供负载;当蓄电池的电量放光前,自动切换到市电供电,同时给蓄电池再次充电,此供电系统可在保证短时间间断的供电基础上,最大化使用太阳能供电,降低市电的使用率。并网型AC供电系统大型太阳能发电系统通常采用并网型AC供电系统。太阳能发出的电能与市电供电线路并联,给负载供电。这种电路
16、架构非常简单,不需要蓄电池储能,太阳能发电直接送给负载或市电中。但是,当市电停电时,直/交流电力转换器会自动停止输出,以防止太阳能供电系统过载损坏,因此,此供电线路不能保证负载的不间断供电。当负载需要的电能少于太阳能发电系统输出的电能时,太阳能系统给负载供电的同时,将多于的电力送往市电(即卖电给电力公司),当太阳能系统电能不足以给负载供电时,太阳能电能全部提供给负载,不足部分由市电补充(即从电力公司买电)。当前国内要实现与市电直接并联供电,还存在许多障碍。(三)离网型太阳能发电系统架构离网型太阳能发电系统主要由太阳能电池板、充电控制器、蓄电池组、直/交流转换器及市电与太阳能电相互切换的开关AT
17、S、防雷系统及远程监控系统组成,主电路如下图所示:考虑采用此电路架构,主要是因为:a) 在不能实现并网供电情况下,主要为负载提供太阳能电,当太阳能电不足以满足负载要求时,再由市电补充提供电能。b) 当电力公司允许太阳能电并网时,只需要更换直/交流转换器就能实现并网供电,以降低系统改造成本。离网型主备用太阳能发电系统示意图四、小型并网太阳能发电系统设计(一)、小型并网太阳能发电系统的构成小型并网太阳能发电系统主要由下列部分构成: 太阳能电池模组; 太阳能电池板支架; 直流配电箱(含防雷模块及信号); 太阳能并网逆变器; 交流配电箱(含防雷模块、计量表及ATS); 屋顶避雷针、接地网、等电位、设备
18、防雷; 太阳能发电系统的监控(包括直流配电箱、太阳能并网逆变器、分布式交流配电箱、电力防雷器件、低压配电系统、发电输电状况等)。1、客户对系统的要求 该太阳能发电系统用于屋顶太阳能并网电源系统; 太阳能功率为3kW,以用户自用电为主,多余电能送给电网; 该系统采用屋顶斜面安装架构或平屋顶标准支架安装架构;2、系统方案该太阳能发电系统供率很小,仅为3kW,因此,并网点为家庭电源并网接入。方案电路图如下:由3.6kWp并网逆变器构成的3kW系统示意图(二)太阳能电池板与太阳能电池模组的选择对于标准型太阳能发电系统,我们可以选用单晶硅太阳能电池板或多晶硅太阳能电池板。一般情况下,当建设空间受限或场地
19、成本较高时,优先选用效率高的单晶硅或多晶硅太阳能电池板。为减少电力电缆的布线及线路复杂度及系统的可用性,本设计尽量采用功率大的太阳能板,并网逆变器可考虑户内安装,设计如下:根据所选用的并网逆变器模块规格,允许输入的直流电压范围为150Vdc-450Vdc,最大功率为2kWp或3.6kWp,太阳能方阵采取串联和/或并联方式,接入并网逆变器,其设计如下:1、太阳能电池板串联对于3kW系统,太阳能电池板串联后构成一组,其开路电压不能超过并网逆变器的最高输入电压,且能尽量地提高太阳能板串联后的输出电压,以便满足逆变器最大功率输出,选择由9块165Wp薄膜电池板串联,则:每组最高开路输出电压:29.13
20、Vdc X 9 = 262.2Vdc每组额定输出电压: 22.8Vdc X 9 = 205.2Vdc每组额定输出功率: 165Wp X 9 = 1485Wp每台逆变器总输出功率:1485Wp X 2 = 2970Wp2、采用3.6kW并网型逆变器构成3kW系统输入为2路各1.65kW输入,如下图所示:采用3.6kW并网逆变器的电路此时,并网逆变器每路输入功率为:1.485kW X 1 = 1.485kW (1.8kW)每台并网逆变器实际输出功率为:1.485kW X 2 = 2.97kW(三)分布式直流配电箱设计分布式直流配电箱是将太阳能电池组矩阵的直流输出,按照太阳能控制器的要求分成若干个符
21、合控制器输入电压及电流要求组,并通过该配电箱汇合后集中将电能送入太阳能控制器。因为太阳能电池组放置在室外,为避免被其它物体遮挡阳光,通常放置在最高处,很容易遭受到雷电袭击,因此,太阳能电池模组需要做好雷电防护。该分布式直流配电箱内部配置了防雷模块,以保护太阳能控制器免受雷电袭击。其中,对防雷器件,采用带辅助触点的器件,当雷电造成防雷器件损坏后,辅助触点闭合,可以给出故障信号,同时因为雷击大电流流经直流电缆,导致保护熔丝熔断,防止再次雷击造成后面设备(如防逆二极管模块及并网逆变器)的损坏。当雷击故障发生后,维护人员收到监控发出的故障及定位信息,能及时对损坏器件进行更换修复。当太阳能电池板开路、熔
22、丝熔断或防逆二极管损坏,造成一组太阳能方阵没有输出,通过对逆变器的输入状况分析,可以告警并定位故障。直流配电箱与并网型逆变器使用数量相同,如下:3.6kW逆变器直流配电箱台数1每串分路额定输入电压(Vdc)205.2每串分路最高输入电压(Vdc)262.2每串分路输入电流(Adc)7.24分布式直流配电箱总功率(kWp)2.97逆变器每端口输入功率(kWp)1.485逆变器每端口输入电流(Adc)7.24实际太阳能输出总功率(kWp)2.97防雷器件规格40kA/820us三极防雷模块数量2(四)并网型光伏逆变器设计与选用所选并网逆变器为户外型,采用分散式逆变并网供电模式,每台可接入14串或2
23、串165W多晶硅太阳能电池板:250W多晶硅3kW系统模组串联(块)6模组串数2每串额定功率(kW)1.5每串额定输出电流(A)6.93kW系统采用3.6kW并网逆变器时:需3.6kW逆变器台数1需要太阳能电池板数12实际太阳能输出总功率(kWp)3下面为台达PV-2.0、PV-3.6和PV-5.0模块的技术参数:电子太阳光电电力调节器产品特色: 采用数个最大功率追踪器,以获得各串太阳光电模组之最佳输出功率; 宽广的直流输入电压范围; 全数位控制,以减少零组件及增加可靠度; 无低频变压器设计可降低重量与体积; 远端监控系统; 符合美国、欧洲与日本安全规格要求。应用范围: 市电并联型发电系统;
24、独立型发电系统; 混合型发电系统。太阳能并网发电逆变器模组PV-2.0PV-3.6输入输入工作电压范围150-450Vdc额定直流输入电压360Vdc最大输入电压450Vdc最大输入电流10Adc18Adc(9AdcX2)输入功率控制系统1MPPT追踪2MPPT追踪输出额定AC输出功率2000W3600W最大效率高达95.6%欧洲效率94.5%额定输出电压208/220/230/240Vac输出电压范围88%-110%输出频率50或60Hz输出频率范围-0.7至+0.5Hz输出功率因素0.99输出总谐波失真5%,符合IEEE1547,EN61000-3-2标准机械参数尺寸 WxDxH (mm)
25、403x320x169403x470x169重量(kg)11.518防护等级IP54冷却方式自然冷却安全符合CE、VDE0126标准(五)交流配电箱设计交流配电箱用来隔离太阳能并网发电系统与市电,并提供雷电防护与电力计量。该交流配电箱可以每路接入1台并网型逆变器,为了保护电力线路不遭受雷电袭击,采用了8/20s,40kA的防雷模块,对每相进行雷电防护。3.6kW逆变器可接入逆变器数1配电箱总容量(kW)3输出空开电流(A)13.6每相防雷等级8/20s,40kA三极防雷模块数量1电度表1(六)、防雷设计太阳能系统的防雷,包括避雷针、引下线、接地体、等电位、气象站、电源线路及信号线路防雷。本设计
26、仅为家庭用户安装太阳能发电装置,一般屋顶均安装有避雷网,但由于太阳能板外框为尖锐金属体,很容易通过太阳能板外框受到雷电直接袭击,为了防护太阳能系统,应在屋顶最高部位安装避雷针,并通过避雷网直接接地,同时,太阳能板外框也需要通过避雷网接地。为了防止感应雷电对太阳能板,直流配电箱,并网逆变器,交流配电箱以及通过市电线路对用电设备的雷电损坏,在直流配电箱和交流配电箱内分别安装了防雷器件。(七)、工程用材料设备齐备后,现场工程包括:太阳能支架、电力电缆、信号电缆、工程五金材料等需要准备,材料的用量取决于现场状况。(八)、设备总表1、3kWp太阳能系统前端设备总表序号设备名称单位规格数量备注1太阳能电池
27、板(250Wp)块/122实际输出总功率kWp3kW13太阳能板支架套3kW1参考100kW逆变器系统4分布式直流配电箱台3kW15并网光伏逆变器台3.6kW16分布式交流配电箱台3kW17避雷针支3kW18工程材料若干9工程费用若干五、屋顶并网太阳能发电系统发电量估算根据宁夏日照条件多年平均太阳日辐射量(斜面)Ht = 12,952 kJ/m2*d首先,将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H:H = Ht 2.77810000h(h)式中:2.77810000(hm2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数。因
28、此,宁夏标准光强(1000W/m2)下的平均日辐射时数H和年平均日辐射时数Ha为:H = 12,952 * 2.778 / 10000 = 3.598 (h)Ha = H * 365 = 1,313.3 (h)系统效率按=90%估计,日发电量与年发电量计算公式如下:W = Pr * H * Wa = Pr * Ha *式中:W :日发电量(kWh);Pr:太阳能系统实际峰值功率(kWp);H :日平均日辐射时数(h);Ha:年平均日辐射时数(h);:太阳能发电系统效率(%)系统架构单位数值备注实际输出功率3kWkWp3投资总额3kW元日平均发电量3kWkWh10.69年平均发电量3kWkWh3,900年CO2减排量3kWTons3.91kg/kWh按电均价0.7元年节省电费3kW元2,730成都西德光能光电股份有限公司2015年10月10日最新合同范本