收藏 分销(赏)

浙江中考数学压轴题汇编.doc

上传人:天**** 文档编号:5199948 上传时间:2024-10-28 格式:DOC 页数:6 大小:249.51KB
下载 相关 举报
浙江中考数学压轴题汇编.doc_第1页
第1页 / 共6页
浙江中考数学压轴题汇编.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
压轴汇编 1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点处,其中,,当k≥2时, ,[]表示非负实数的整数部分,例如[2.6]=2,[0.2]=0。按此方案,第2009棵树种植点的坐标为 A.(5,2009) B.(6,2010) C.(3,401) D(4,402) 2. 以正方形的边为直径作半圆, 过点作直线切半圆于点, 交边于点. 则三角形和直角梯形周长之比为 (A) 3:4 (B) 4:5 (C) 5:6 (D) 6:7 3. 设,是关于的方程的两根,,是关于的方程的两根,则,的值分别等于( ) (A)1,-3 (B)1,3 (C)-1,-3 (D)-1,3 4. 如图,在RtΔABC中,AF是斜边上的高线,且BD=DC=FC=1,则AC的长为 (A) (B) (C) (D) 4 4 5 5.如图,在等腰中,AC=BC,以斜边AB为一边作等边,使点C,D在AB的同侧;再以CD为一边作等边,使点C,E落在AD的异侧.若AE=1,则CD的长为 ( ) (A) (B) (C) (D) 填空 1.如图,矩形ABCD(AD>AB)中,AB=a,∠BDA=,作AE交BD于E,且AE=AB,试用a与表示:AD=______,BE=_______. 2. 根据指令[s,A](s≥0,0º<A<180º),机器人在平面上能完成下列动作:先在原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s。现机器人在直角坐标系的坐标原点,且面对x轴正方向。(1)若给机器人下了一个指令[4,60º],则机器人应移动到点________;(2)请你给机器人下一个指令________,使其移动到点(-5,5)。 3. 在关于x1,x2,x3的方程组中,已知,那么将x1,x2,x3从大到小排起来应该是____________ 4. 给出一个正方形,请你动手画一画,将它剖分为个小正方形。那么,通过实验与思考,你认为这样的自然数可以取的所有值应该是_________________ 5.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是 ;△BPD的面积是 。 A B C D P 6 6. 如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过ΔABC的内切圆圆心O,且点E在半圆弧上。①若正方形的顶点F也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG的面积为100,且ΔABC的内切圆半径=4,则半圆的直径AB = __________。 简答 1.已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3. (1)求该抛物线所对应的函数关系式; (2)将矩形ABCD以每秒1个单位长度的速度从图22-1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图22-2所示). ① 当t=时,判断点P是否在直线ME上,并说明理由; ② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 22-2 B C O A D E M y x P N · 22-1 B C O (A) D E M y x x y D C A O B 2.抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为. (1)直接写出、、三点的坐标和抛物线的对称轴; (2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点作交抛物线于点,设点的横坐标为; ①用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?②设的面积为,求与的函数关系式. 3、如图,在Rt△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点P沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s)。 ⑴ 求x为何值时,PQ⊥AC; ⑵ 设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式; ⑶ 当0<x<2时,求证:AD平分△PQD的面积; 4、中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。 (1)用含x的代数式表示AE、DE的长度; (2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围; (3)当为何值时,为直角三角形。 5 6.如图,在平面直角坐标系中,点A(,0),B(3,2),(0,2).动点D以每秒1个单位的速度 从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒. (1)求∠ABC的度数; (2)当t为何值时,AB∥DF; (3)设四边形AEFD的面积为S.①求S关于t的函数关系式; ②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 文学艺术 > 报告文学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服