资源描述
人教版七年级下册数学期末解答题培优卷附答案
一、解答题
1.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
2.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是___________;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?
3.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
4.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二、解答题
6.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).
(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 .
(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 .
7.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
8.如图①,将一张长方形纸片沿对折,使落在的位置;
(1)若的度数为,试求的度数(用含的代数式表示);
(2)如图②,再将纸片沿对折,使得落在的位置.
①若,的度数为,试求的度数(用含的代数式表示);
②若,的度数比的度数大,试计算的度数.
9.已知,定点,分别在直线,上,在平行线,之间有一动点.
(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.
(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明
(3)当满足,且,分别平分和,
①若,则__________°.
②猜想与的数量关系.(直接写出结论)
10.已知直线,点P为直线、所确定的平面内的一点.
(1)如图1,直接写出、、之间的数量关系 ;
(2)如图2,写出、、之间的数量关系,并证明;
(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.
三、解答题
11.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由.
(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)
(3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t.
12.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线.
(2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据).
13.已知:如图1,,点,分别为,上一点.
(1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.
(2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明).
14.问题情境
(1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,.
①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;
②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系.
15.如图1,,在、内有一条折线.
(1)求证:;
(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;
(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系.
四、解答题
16.小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;
(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;
(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.
17.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
18.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
19.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
20.已知,,点为射线上一点.
(1)如图1,写出、、之间的数量关系并证明;
(2)如图2,当点在延长线上时,求证:;
(3)如图3,平分,交于点,交于点,且:,,,求的度数.
【参考答案】
一、解答题
1.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
2.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析
【分析】
(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;
(2)设长方形纸片的长为,宽为,根据
解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析
【分析】
(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;
(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.
【详解】
(1)∵用两个面积为的小正方形拼成一个大的正方形,
∴大正方形的面积为400,
∴大正方形的边长为
故答案为:20cm;
(2)设长方形纸片的长为,宽为,
,
解得:,
,
答:不能剪出长宽之比为5:4,且面积为的大长方形.
【点睛】
此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.
3.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
4.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
5.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二、解答题
6.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出
解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;
(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;
(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.
【详解】
解:(1)过点E作EF//AB,
∴∠B=∠BEF.
∵∠BEF+∠FED=∠BED,
∴∠B+∠FED=∠BED.
∵∠B+∠D=∠E(已知),
∴∠FED=∠D.
∴CD//EF(内错角相等,两直线平行).
∴AB//CD.
(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,
∵AB∥CD,
∴AB∥EM∥FN∥GH∥CD,
∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,
∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,
即∠E+∠G=∠B+∠F+∠D.
由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,
∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
(3)如图,过点M作EF∥AB,过点N作GH∥AB,
∴∠APM+∠PME=180°,
∵EF∥AB,GH∥AB,
∴EF∥GH,
∴∠EMN+∠MNG=180°,
∴∠1+∠2+∠MNG =180°×2,
依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.
故答案为:(n-1)•180°.
【点睛】
本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.
7.(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图
解析:(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【详解】
解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
8.(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义
解析:(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;
②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解.
【详解】
解:(1)如图,由题意可知,
∴,
∵,
∴,
,
由折叠可知.
(2)①由题(1)可知 ,
∵,
,
再由折叠可知:
,
;
②由可知:,
由(1)知,
,
又的度数比的度数大,
,
,
,
.
【点睛】
此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
9.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF
【分析】
(1)由于点是平行线,之间
解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF
【分析】
(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;
(2)当点在的右侧时,,,满足数量关系为:;
(3)①若当点在的左侧时,;当点在的右侧时,可求得;
②结合①可得,由,得出;可得,由,得出.
【详解】
解:(1)如图1,过点作,
,
,
,
,
,
;
(2)如图2,当点在的右侧时,,,满足数量关系为:;
过点作,
,
,
,
,
,
;
(3)①如图3,若当点在的左侧时,
,
,
,分别平分和,
,,
;
如图4,当点在的右侧时,
,
,
;
故答案为:或30;
②由①可知:,
;
,
.
综合以上可得与的数量关系为:或.
【点睛】
本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.
10.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360
解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.
【详解】
解:(1)∠A+∠C+∠APC=360°
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;
(2)∠APC=∠A+∠C,
如图2,作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ-∠CPQ,
∴∠APC=∠A-∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG-∠GEH
=∠FEG-∠BEG
=∠BEF
=55°.
【点睛】
此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
三、解答题
11.(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反
解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;
(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.
【详解】
解:(1)平行.理由如下:
如图1,∵∠3=∠4,
∴∠5=∠6,
∵∠1=∠2,
∴∠1+∠5=∠2+∠6,
∴a∥b(内错角相等,两直线平行);
(2)如图2:
∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,
∴∠1=∠2,
∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,
∴∠1+∠2=180°-40°-90°=50°,
∴∠1=×50°=25°,
∴MN与水平线的夹角为:25°+40°=65°,
即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;
(3)存在.
如图①,AB与CD在EF的两侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠ACD=180°-65°-3t°=115°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠ACD=∠BAC,
即115-3t=105-t,
解得t=5;
如图②,CD旋转到与AB都在EF的右侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=360°-3t°-65°=295°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠DCF=∠BAC,
即295-3t=105-t,
解得t=95;
如图③,CD旋转到与AB都在EF的左侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,
∠BAC=t°-105°,
要使AB∥CD,
则∠DCF=∠BAC,
即3t-295=t-105,
解得t=95,
此时t>105,
∴此情况不存在.
综上所述,t为5秒或95秒时,CD与AB平行.
【点睛】
本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.
12.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
故答案为垂;
(2)证明:平分,平分(已知),
,(角平分线的定义),
(已知),
(两直线平行,内错角相等),
(等量代换),
(等式性质),
(内错角相等,两直线平行).
【点睛】
本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
13.(1)见解析;(2)见解析
【分析】
(1)过点M作MP∥AB.根据平行线的性质即可得到结论;
(2)根据平行线的性质即可得到结论.
【详解】
解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E
解析:(1)见解析;(2)见解析
【分析】
(1)过点M作MP∥AB.根据平行线的性质即可得到结论;
(2)根据平行线的性质即可得到结论.
【详解】
解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.
证明:过点M作MP∥AB.
∵AB∥CD,
∴MP∥CD.
∴∠4=∠3.
∵MP∥AB,
∴∠1=∠2.
∵∠EMF=∠2+∠3,
∴∠EMF=∠1+∠4.
∴∠EMF=∠AEM+∠MFC;
证明:过点M作MQ∥AB.
∵AB∥CD,
∴MQ∥CD.
∴∠CFM+∠1=180°;
∵MQ∥AB,
∴∠AEM+∠2=180°.
∴∠CFM+∠1+∠AEM+∠2=360°.
∵∠EMF=∠1+∠2,
∴∠AEM+∠EMF+∠MFC=360°;
(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;
过点M作MP∥AB,过点N作NQ∥AB,
∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,
∴∠2+∠3=180°,
∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,
∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,
∴∠EMN+∠MNF-∠AEM-∠NFC
=∠1+∠2+∠3+∠4-∠1-∠4
=∠2+∠3
=180°;
如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.
过点M作MP∥AB,过点N作NQ∥AB,
∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,
∴∠2=∠3,
∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,
∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,
∴∠EMN-∠MNF+∠AEM+∠NFC
=∠1+∠2-∠3-∠4+180°-∠1+∠4
=180°.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
14.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即
解析:(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即可得到;
(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为.
【详解】
解:(1)如图1,过点作,则,
由平行线的性质可得,,
又∵,,
∴,
故答案为:;
(2)①如图2,与,之间的数量关系为;
过点P作PM∥FD,则PM∥FD∥CG,
∵PM∥FD,
∴∠1=∠α,
∵PM∥CG,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:,
②如图,与,之间的数量关系为;理由:
过作,
∵,
∴,
∴,,
∴;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN平分∠DEP,AN平分∠PAC,
∴∠3=∠α,∠4=∠β,
∴,
∴与,之间的数量关系为.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
15.(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过
解析:(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过点作,
∵,
∴,
∴,,
又∵,
∴;
(2)如图2,
由(1)可得:,,
∵的平分线与的平分线相交于点,
∴
,
∴;
(3)由(2)可得:,,
∵,,
∴
,
∴;
【点睛】
考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键.
四、解答题
16.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.
【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可
解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.
【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明;
[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=;
[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.
【详解】
[习题回顾]证明:∵∠ACB=90°,CD是高,
∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,
∴∠B=∠ACD,
∵AE是角平分线,
∴∠CAF=∠DAF,
∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,
∴∠CEF=∠CFE;
[变式思考]相等,理由如下:
证明:∵AF为∠BAG的角平分线,
∴∠GAF=∠DAF,
∵∠CAE=∠GAF,
∴∠CAE=∠DAF,
∵CD为AB边上的高,∠ACB=90°,
∴∠ADC=90°,
∴∠ADF=∠ACE=90°,
∴∠DAF+∠F=90°,∠E+∠CAE=90°,
∴∠CEF=∠CFE;
[探究延伸]∠M+∠CFE=90°,
证明:∵C、A、G三点共线 AE、AN为角平分线,
∴∠EAN=90°,
又∵∠GAN=∠CAM,
∴∠M+∠CEF=90°,
∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,
∴∠CEF=∠CFE,
∴∠M+∠CFE=90°.
【点睛】
本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.
17.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=∠PAB,∠ABC=∠ABM,
展开阅读全文