收藏 分销(赏)

常州市天一中学七年级下册数学期末试卷章末训练(Word版-含解析).doc

上传人:快乐****生活 文档编号:5181040 上传时间:2024-10-28 格式:DOC 页数:32 大小:1.01MB
下载 相关 举报
常州市天一中学七年级下册数学期末试卷章末训练(Word版-含解析).doc_第1页
第1页 / 共32页
常州市天一中学七年级下册数学期末试卷章末训练(Word版-含解析).doc_第2页
第2页 / 共32页
常州市天一中学七年级下册数学期末试卷章末训练(Word版-含解析).doc_第3页
第3页 / 共32页
常州市天一中学七年级下册数学期末试卷章末训练(Word版-含解析).doc_第4页
第4页 / 共32页
常州市天一中学七年级下册数学期末试卷章末训练(Word版-含解析).doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、常州市天一中学七年级下册数学期末试卷章末训练(Word版 含解析)一、解答题1已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)2已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜

2、想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系3如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)4已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数

3、;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BOE的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系5问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN

4、或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数二、解答题6已知,点为平面内一点,于(1)如图1,点在两条平行线外,则与之间的数量关系为_;(2)点在两条平行线之间,过点作于点如图2,说明成立的理由;如图3,平分交于点平分交于点若,求的度数7问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直

5、尺的两边重合与相交于点,有一动点在边上运动,连接,记如图2,当点在两点之间运动时,请直接写出与之间的数量关系;如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由8已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为AC上一点,请写出与之间的等量关系,并说明理由(3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论9已知直线,点分别为, 上的点(1)如图1,若, ,求与的度数;(2)如图2,若, ,则_;(3)若把(2)中“, ”改

6、为“, ”,则_(用含的式子表示)10如图1,在平面直角坐标系中,且满足,过作轴于(1)求三角形的面积(2)发过作交轴于,且分别平分,如图2,若,求的度数(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由三、解答题11在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,BDE的角平分线所在直线与射线AG交于点F试探究A

7、FD与B之间的数量关系,并说明理由12(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由13在中,点在直线上运动(不与点、重合),点在射线上运动,且,设(1)如图,当点在边上,且时,则_,_;(2)如图,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;

8、(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图中画出图形,并给予证明(画图痕迹用黑色签字笔加粗加黑)14如图,ABC和ADE有公共顶点A,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由15如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,

9、_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、解答题1(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图解析:(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在

10、点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质2(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可解析:(1)18;2BEG+HFG=90,证明见解析;(2)2BE

11、G-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由

12、:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,

13、再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=4

14、0+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过

15、拐点作平行线4(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)解析:(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=

16、BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是OCD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB

17、,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键5(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线解析:(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEA

18、B,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BA

19、P+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键二、解答题6(1)A+C=90;(2)见解析;105【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BGDM,根据平行线找角的联系即可求解;先过点B作BG解析:(1)A+C=90;(2)见解析;105【分析】(1)根据平行线的性质以及直角三角形的性质进行证明

20、即可;(2)过点B作BGDM,根据平行线找角的联系即可求解;先过点B作BGDM,根据角平分线的定义,得出ABF=GBF,再设DBE=,ABF=,根据CBF+BFC+BCF=180,可得2+3+3+=180,根据ABBC,可得+2=90,最后解方程组即可得到ABE=15,进而得出EBC=ABE+ABC=15+90=105【详解】解:(1)如图1,AM与BC的交点记作点O,AMCN,C=AOB,ABBC,A+AOB=90,A+C=90;(2)如图2,过点B作BGDM,BDAM,DBBG,DBG=90,ABD+ABG=90,ABBC,CBG+ABG=90,ABD=CBG,AMCN,BGDM, C=C

21、BG,ABD=C;如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBF=CBF,DBE=ABE,由(2)知ABD=CBG,ABF=GBF,设DBE=,ABF=,则ABE=,ABD=2=CBG,GBF=AFB=,BFC=3DBE=3,AFC=3+,AFC+NCF=180,FCB+NCF=180,FCB=AFC=3+,BCF中,由CBF+BFC+BCF=180得:2+3+3+=180,ABBC,+2=90,=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导余角和

22、补角计算的应用,常常与等式的性质、等量代换相关联解题时注意方程思想的运用7(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;解析:(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;过P作PQDF,依据平行线的性质可得=QPA,=QPE,即可得到APE=APQ-EPQ=-【详解】解:(1)过点P作PGAB,则PGCD,由平行线的性质可得B+BPG=180,C+

23、CPG=180,又PBA=125,PCD=155,BPC=360-125-155=80,故答案为:80;(2)如图2,过点P作FD的平行线PQ,则DFPQAC,=EPQ,=APQ,APE=EPQ+APQ=+,APE与,之间的数量关系为APE=+;如图3,APE与,之间的数量关系为APE=-;理由:过P作PQDF,DFCG,PQCG,=QPA,=QPE,APE=APQ-EPQ=-【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论8(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长

24、线上时,140POQOPQ+PQF解析:(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF【分析】(1)如图1,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后利用ACP+BCP90即可求得答案;(2)如图2,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后结合已知条件可得BCPNEF,然后利用ACP+BCP90即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PNOG,则NPOGEF,根据平行线的性质

25、可推出OPQGOP+PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可【详解】解:(1)如图1,作CPa,CPab,AOGACP,BCP+CEF180,BCP180CEF,ACP+BCP90,AOG+180CEF90,AOG46,CEF136,故答案为136;(2)AOG+NEF90理由如下:如图2,作CPa,则CPab,AOGACP,BCP+CEF180,而NEF+CEF180,BCPNEF,ACP+BCP90,AOG+NEF90;(3)如图3,当点P在GF上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPQGOP+PQF,O

26、PQ140POQ+PQF;如图4,当点P在线段GF的延长线上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPNOPQ+QPN,GOPOPQ+PQF,140POQOPQ+PQF【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键9(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行线的性质和周角

27、可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,根据, 求解即可;(3)同理(1)的求法,根据, 求解即可;【详解】解:(1)如图示,分别过点作, ,又,(2)如图示,分别过点作, ,又,故答案为:160;(3)同理(1)的求法, ,又, ,故答案为:【点睛】本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键10(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45;(3)P(0,1)或(0,

28、3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积4;(2)由于CBy轴,BDAC,则CABABD,即345690,过E作EFAC,则BDACEF,然后利用角平分线的定义可得到341,562,所以AED129045;(3)先根据待定系数法确定直线AC的解析式为yx1,则G点坐标为(0,1),然后利用SPACSAPGSCPG进行计算【详解】解:(1)由题意知:ab,ab40,解得:a2,b2, A(2,0),B(2,0),C(2,2),SABC;(2)CBy轴,BDAC,CABABD,345690,过E作

29、EFAC,BDAC,BDACEF,AE,DE分别平分CAB,ODB,341,562,AED129045;(3)存在理由如下:设P点坐标为(0,t),直线AC的解析式为ykxb,把A(2,0)、C(2,2)代入得:,解得,直线AC的解析式为yx1,G点坐标为(0,1),SPACSAPGSCPG|t1|2|t1|24,解得t3或1,P点坐标为(0,3)或(0,1)【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等三、解答题11(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30

30、,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由角平分线定义得出,由三角形的外角性质得出DGF=100,再由三角形的外角性质即可得出结果;若B=40,则BAC+C=180-40=140,由角平分线定义得出,由三角形的外角性质即可得出结果;由得:EDB=C,由三角形的外角性质得出DGF=B+BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:EDB=C,,由三角形的外角性质和三角形内角和定理即可得

31、出结论【详解】(1)若BAC=100,C=30,则B=180-100-30=50,DEAC,EDB=C=30,AG平分BAC,DF平分EDB,DGF=B+BAG=50+50=100,AFD=DGF+FDG=100+15=115;若B=40,则BAC+C=180-40=140,AG平分BAC,DF平分EDB,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=故答案为:115;110;理由如下:由得:EDB=C,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=;(2)如图2所示:;理由如下:由(1)得:EDB=C,AHF=B+BDH,AFD=180-BAG-AHF【点

32、睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键12(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=

33、B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+EC

34、B=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用13(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC解析:(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CD

35、E,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC,求出BAD在ABC中利用三角形内角和定理求出ABC=ACB=40,根据三角形外角的性质得出ADC=ABC+BAD=100,在ADE中利用三角形内角和定理求出ADE=AED=70,那么CDE=ADC-ADE=30;(2)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACB-AED=,再由BAD=DAC-BAC得到BAD=n-100,从而得出结论BAD=2CDE;(3)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40

36、,ADE=AED=根据三角形外角的性质得出CDE=ACD-AED=,再由BAD=BAC+DAC得到BAD=100+n,从而得出结论BAD=2CDE【详解】解:(1)BAD=BAC-DAC=100-40=60在ABC中,BAC=100,ABC=ACB,ABC=ACB=40,ADC=ABC+BAD=40+60=100DAC=40,ADE=AED,ADE=AED=70,CDE=ADC-ADE=100-70=30故答案为60,30(2)BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40在ADE中,DAC=n,ADE=AED=,ACB=CDE+AED,CDE=ACB-AE

37、D=40-=,BAC=100,DAC=n,BAD=n-100,BAD=2CDE(3)成立,BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40,ACD=140在ADE中,DAC=n,ADE=AED=,ACD=CDE+AED,CDE=ACD-AED=140-=,BAC=100,DAC=n,BAD=100+n,BAD=2CDE【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键14(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定解析:(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定义求出M,N(用FAO表示),可得结论【详解】解:(1)如图,ABEDE=EAB=90(两直线平行,内错角相等),BAC=45,CAE=90-45=45故答案为:45(2)如图1中,OGAC,AOG=90,OAG=45,OAG=OGA=45,AO=OG=2,SAHG=GHAO=4,SAHF=FHAO=1,GH=4,FH=1,OF=GH-HF-OG=4-1-2=1结论:N+

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服