1、2014年湖南省湘潭市中考数学试卷一、选择题1(3分)下列各数中是无理数的是()AB2C0D2(3分)下列计算正确的是()Aa+a2a3B21C2a3a6aD2+23(3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE15米,则AB()米A7.5B15C22.5D304(3分)分式方程的解为()A1B2C3D45(3分)如图,所给三视图的几何体是()A球B圆柱C圆锥D三棱锥6(3分)式子有意义,则x的取值范围是()Ax1Bx1Cx1Dx17(3分)以下四个命题正确的是()A任意三点可以确定一个圆B菱形对角线相等C直角三角形斜边上的中线等
2、于斜边的一半D平行四边形的四条边相等8(3分)如图,A、B两点在双曲线y上,分别经过A、B两点向轴作垂线段,已知S阴影1,则S1+S2()A3B4C5D6二、填空题9(3分)3的相反数是 10(3分)分解因式:axa 11(3分)未测试两种电子表的走时误差,做了如下统计平均数方差甲0.40.026乙0.40.137则这两种电子表走时稳定的是 12(3分)计算:()2|2| 13(3分)如图,直线a、b被直线c所截,若满足 ,则a、b平行14(3分)如图,O的半径为3,P是CB延长线上一点,PO5,PA切O于A点,则PA 15(3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽
3、东纪念馆的人数是到雷锋纪念馆人数的2倍多56人设到雷锋纪念馆的人数为x人,可列方程为 16(3分)如图,按此规律,第6行最后一个数字是 ,第 行最后一个数是2014三、综合解答题17在边长为1的小正方形网格中,AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为 ;(2)将AOB向左平移3个单位长度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为 18先化简,再求值:(+),其中x219如图,修公路遇到一座山,于是要修一条隧道为了加快施工进度,想在小山的另一侧同时施工为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁
4、边经过),与L相交于D点,经测量ABD135,BD800米,求直线L上距离D点多远的C处开挖?(1.414,精确到1米)20如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD3,BD6(1)求证:EDFCBF;(2)求EBC21某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由22有两个构造完全相同(除所标数字
5、外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?23从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间1小时;B、1小时上网时间4小时;C、4小时上网时间7小时;D、上网时间7小时统计结果制成了如图统计图:(1)参加调查的学生有 人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数24已知两直线L1:yk1x+b1,L2:yk2x+b2,若L1L2,则有k1k21(1)应用:已知y2x+1与ykx1垂直,求k;(2)直线经过A(2,3),且与yx+3垂直,求解析式25ABC为等边三
6、角形,边长为a,DFAB,EFAC,(1)求证:BDFCEF;(2)若a4,设BFm,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tanEDF,求此圆直径26已知二次函数yx2+bx+c的对称轴为x2,且经过原点,直线AC解析式为ykx+4,(1)求二次函数解析式;(2)若,求k;(3)若以BC为直径的圆经过原点,求k2014年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题1(3分)下列各数中是无理数的是()AB2C0D【考点】26:无理数【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念
7、,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【解答】解:A、正确;B、是整数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是分数,是有理数,选项错误故选:A【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数2(3分)下列计算正确的是()Aa+a2a3B21C2a3a6aD2+2【考点】2C:实数的运算;35:合并同类项;49:单项式乘单项式;6F:负整数指数幂【专题】11:计算题【分析】A、原式不能合并,错误;B、原式利用负指数幂法则计算
8、得到结果,即可做出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D、原式不能合并,错误【解答】解:A、原式不能合并,故选项错误;B、原式,故选项正确;C、原式6a2,故选项错误;D、原式不能合并,故选项错误故选:B【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键3(3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE15米,则AB()米A7.5B15C22.5D30【考点】KX:三角形中位线定理【专题】12:应用题【分析】根据三角形的中位线得出AB2DE,代入即可求出答案【解答】解:D、E分别是AC、B
9、C的中点,DE15米,AB2DE30米,故选:D【点评】本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半4(3分)分式方程的解为()A1B2C3D4【考点】B3:解分式方程【专题】11:计算题【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解答】解:去分母得:5x3x+6,移项合并得:2x6,解得:x3,经检验x3是分式方程的解故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根5(3分)如图,所给三视图的几何体是()A球B圆柱C圆锥D三
10、棱锥【考点】U3:由三视图判断几何体【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥故选:C【点评】本题考查了由三视图判断几何体的知识,解题的关键是了解主视图和左视图的大致轮廓为长方形的几何体为锥体6(3分)式子有意义,则x的取值范围是()Ax1Bx1Cx1Dx1【考点】72:二次根式有意义的条件【专题】11:计算题【分析】根据二次根式的被开方数是非负数列出不等式x10,通过解该不等式即可求得x的取值范围【解答】解:根据题意,得x10,解得,x1故选:C【点评】此题考查了二次根
11、式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义7(3分)以下四个命题正确的是()A任意三点可以确定一个圆B菱形对角线相等C直角三角形斜边上的中线等于斜边的一半D平行四边形的四条边相等【考点】O1:命题与定理【分析】利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案【解答】解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等故选:C【点评】本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形
12、的性质及平行四边形的性质,难度一般8(3分)如图,A、B两点在双曲线y上,分别经过A、B两点向轴作垂线段,已知S阴影1,则S1+S2()A3B4C5D6【考点】G5:反比例函数系数k的几何意义【专题】121:几何图形问题【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y的系数k,由此即可求出S1+S2【解答】解:点A、B是双曲线y上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|4,S1+S24+4126故选:D【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,
13、有一定的难度二、填空题9(3分)3的相反数是3【考点】14:相反数【分析】一个数的相反数就是在这个数前面添上“”号【解答】解:(3)3,故3的相反数是3故答案为:3【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0学生易把相反数的意义与倒数的意义混淆10(3分)分解因式:axaa(x1)【考点】53:因式分解提公因式法【专题】44:因式分解【分析】提公因式法的直接应用观察原式axa,找到公因式a,提出即可得出答案【解答】解:axaa(x1)故答案为:a(x1)【点评】考查了对一个多项式因式分解的能力一般地,因式
14、分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法要求灵活运用各种方法进行因式分解该题是直接提公因式法的运用11(3分)未测试两种电子表的走时误差,做了如下统计平均数方差甲0.40.026乙0.40.137则这两种电子表走时稳定的是甲【考点】W1:算术平均数;W7:方差【专题】27:图表型【分析】根据方差的意义判断,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可【解答】解:甲的方差是0.026,乙的方差是0.137,0.0260.137,这两种电子表走时稳定的是甲;故答案为:甲【点评】本题考查方差的意义它反映了一组数据的波动大小,方差
15、越大,波动性越大,反之也成立12(3分)计算:()2|2|1【考点】2C:实数的运算【专题】11:计算题【分析】原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,计算即可得到结果【解答】解:原式321故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键13(3分)如图,直线a、b被直线c所截,若满足12或23或3+4180,则a、b平行【考点】J9:平行线的判定【专题】26:开放型【分析】根据同位角或内错角相等以及同旁内角互补,两直线平行可得ab【解答】解:12,ab(同位角相等两直线平行),同理可得:23或3+4180时,ab,故答案为:12或23或3+418
16、0【点评】此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行14(3分)如图,O的半径为3,P是CB延长线上一点,PO5,PA切O于A点,则PA4【考点】KQ:勾股定理;MC:切线的性质【专题】11:计算题【分析】先根据切线的性质得到OAPA,然后利用勾股定理计算PA的长【解答】解:PA切O于A点,OAPA,在RtOPA中,OP5,OA3,PA4故答案为:4【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了勾股定理15(3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人设到雷锋纪念馆的人数为x人,可列方程为
17、2x+56589x【考点】89:由实际问题抽象出一元一次方程【专题】12:应用题【分析】设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人列方程即可【解答】解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589x)人,由题意得,2x+56589x故答案为:2x+56589x【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程16(3分)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014【考点】37:规律型:数字的变化类【专题】2A:规律型【分析】每
18、一行的最后一个数字分别是1,4,7,10,易得第n行的最后一个数字为1+3(n1)3n2,由此求得第6行最后一个数字,建立方程求得最后一个数是2014在哪一行【解答】解:每一行的最后一个数分别是1,4,7,10,第n行的最后一个数字为1+3(n1)3n2,第6行最后一个数字是36216;3n22014解得n672因此第6行最后一个数字是16,第672行最后一个数是2014故答案为:16,672【点评】此题考查数字的排列规律,找出数字之间的联系,得出运算规律解决问题三、综合解答题17在边长为1的小正方形网格中,AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(3,2);(2)将AOB向左
19、平移3个单位长度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为(2,3)【考点】P5:关于x轴、y轴对称的点的坐标;Q4:作图平移变换【专题】13:作图题【分析】(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可【解答】解:(1)B点关于y轴的对称点坐标为(3,2);(2)A1O1B1如图所示;(3)A1的坐标为(2,3)故答案为:(1)(3,2);(3)(2,3)【点评】本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练
20、掌握网格结构准确找出对应点的位置是解题的关键18先化简,再求值:(+),其中x2【考点】6D:分式的化简求值【专题】11:计算题【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果【解答】解:原式+,当x2时,原式【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键19如图,修公路遇到一座山,于是要修一条隧道为了加快施工进度,想在小山的另一侧同时施工为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量ABD135,BD800米,求直线L上距离D点多远的C处开挖?
21、(1.414,精确到1米)【考点】KU:勾股定理的应用【专题】121:几何图形问题【分析】首先证明BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2BD2,然后再代入BD800米进行计算即可【解答】解:CDAC,ACD90,ABD135,DBC45,D45,CBCD,在RtDCB中:CD2+BC2BD2,2CD28002,CD400566(米),答:直线L上距离D点566米的C处开挖【点评】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用20如图,将矩形
22、ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD3,BD6(1)求证:EDFCBF;(2)求EBC【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题)【专题】14:证明题【分析】(1)首先根据矩形的性质和折叠的性质可得DEBC,EC90,对顶角DFEBFC,利用AAS可判定DEFBCF;(2)在RtABD中,根据AD3,BD6,可得出ABD30,然后利用折叠的性质可得DBE30,继而可求得EBC的度数【解答】(1)证明:由折叠的性质可得:DEBC,EC90,在DEF和BCF中,DEFBCF(AAS);(2)解:在RtABD中,AD3,BD6,ABD30
23、,由折叠的性质可得;DBEABD30,EBC90303030【点评】本题考查了折叠的性质、矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键21某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由【考点】CE:一元一次不等式组的应用【专题】12:应用题【分析】(1)设购买污水处理设备A型号x台,则购买B型号(8x)台,根
24、据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可(2)计算出每一方案的花费,通过比较即可得到答案【解答】解:设购买污水处理设备A型号x台,则购买B型号(8x)台,根据题意,得,解这个不等式组,得:2.5x4.5x是整数,x3或x4当x3时,8x5;当x4时,8x4答:有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;(2)当x3时,购买资金为123+10586(万元),当x4时,购买资金为124+10488(万元)因为8886,所以为了节约资金,应购污水处理设
25、备A型号3台,B型号5台答:购买3台A型污水处理设备,5台B型污水处理设备更省钱【点评】本题考查了一元一次不等式组的应用,本题是“方案设计”问题,一般可把它转化为求不等式组的整数解问题,通过表格获取相关信息,在实际问题中抽象出不等式组是解决这类问题的关键22有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】X6:列表法与树状图法【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A大于B的有5种情况,A小于B的有4种情况,再利用概率公式即可求得答案【解答】解:选择A转盘画树
26、状图得:共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,P(A大于B),P(A小于B),选择A转盘【点评】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比23从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间1小时;B、1小时上网时间4小时;C、4小时上网时间7小时;D、上网时间7小时统计结果制成了如图统计图:(1)参加调查的学生有200人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学
27、生人数【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图【专题】27:图表型【分析】(1)用A的人数除以所占的百分比求出总人数;(2)用总人数减去A、B、D的人数,再画出即可;(3)用总人数乘以全校上网不超过7小时的学生人数所占的百分比即可【解答】解:(1)参加调查的学生有20200(人);故答案为:200;(2)C的人数是:20020804060(人),补图如下:(3)根据题意得:1200960(人),答:全校上网不超过7小时的学生人数是960人【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示
28、出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24已知两直线L1:yk1x+b1,L2:yk2x+b2,若L1L2,则有k1k21(1)应用:已知y2x+1与ykx1垂直,求k;(2)直线经过A(2,3),且与yx+3垂直,求解析式【考点】FF:两条直线相交或平行问题【专题】151:代数综合题【分析】(1)根据L1L2,则k1k21,可得出k的值即可;(2)根据直线互相垂直,则k1k21,可得出过点A直线的k等于3,得出所求的解析式即可【解答】解:(1)L1L2,则k1k21,2k1,k;(2)过点A直线与yx+3垂直,设过点A直线的直线解析式为y3x+b,把A(2,3)代入得,b
29、3,解析式为y3x3【点评】本题考查了两直线相交或平行问题,是基础题,当两直线垂直时,两个k值的乘积为125ABC为等边三角形,边长为a,DFAB,EFAC,(1)求证:BDFCEF;(2)若a4,设BFm,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tanEDF,求此圆直径【考点】H7:二次函数的最值;KK:等边三角形的性质;M5:圆周角定理;SO:相似形综合题;T7:解直角三角形【专题】15:综合题;2B:探究型【分析】(1)只需找到两组对应角相等即可(2)四边形ADFE面积S可以看成ADF与AEF的面积之和,借助三
30、角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题(3)易知AF就是圆的直径,利用圆周角定理将EDF转化为EAF在AFC中,知道tanEAF、C、AC,通过解直角三角形就可求出AF长【解答】解:(1)DFAB,EFAC,BDFCEF90ABC为等边三角形,BC60BDFCEF,BC,BDFCEF(2)BDF90,B60,sin60,cos60BFm,DFm,BDAB4,AD4SADFADDF(4)mm2+m同理:SAEFAEEF(4)(4m)m2+2SSADF+SAEFm2+m+2(m24m8)(m2)2+3其中0m
31、40,024,当m2时,S取最大值,最大值为3S与m之间的函数关系为:S(m2)2+3(其中0m4)当m2时,S取到最大值,最大值为3(3)如图2,A、D、F、E四点共圆,EDFEAFADFAEF90,AF是此圆的直径tanEDF,tanEAFC60,tan60设ECx,则EFx,EA2xACa,2x+xaxEF,AEAEF90,AF此圆直径长为【点评】本题考查了相似三角形的判定、二次函数的最值、三角函数、解直角三角形、圆周角定理、等边三角形的性质等知识,综合性强利用圆周角定理将条件中的圆周角转化到合适的位置是解决最后一小题的关键26已知二次函数yx2+bx+c的对称轴为x2,且经过原点,直线
32、AC解析式为ykx+4,(1)求二次函数解析式;(2)若,求k;(3)若以BC为直径的圆经过原点,求k【考点】HF:二次函数综合题【专题】153:代数几何综合题【分析】方法一:(1)由对称轴为x,且函数过(0,0),则可推出b,c,进而得函数解析式(2),且两三角形为同高不同底的三角形,易得,考虑计算方便可作B,C对x轴的垂线,进而有B,C横坐标的比为由B,C为直线与二次函数的交点,则联立可求得B,C坐标由上述倍数关系,则k易得(3)以BC为直径的圆经过原点,即BOC90,一般考虑表示边长,再用勾股定理构造方程求解k可是这个思路计算量异常复杂,基本不考虑,再考虑(2)的思路,发现B,C横纵坐标
33、恰好可表示出EB,EO,OF,OC而由BOC90,易证EBOFOC,即EBFCEOFO有此构造方程发现k值大多可约去,进而可得k值方法二:(1)略(2)求出两个三角形面积表达式,利用面积比得出等式,并求出K的值(3)由BC为直径,得出OB垂直OC,求出点B,C参数坐标利用黄金法则二列出等式,并求出K的值【解答】方法一:解:(1)二次函数yx2+bx+c的对称轴为x2,且经过原点,2,00+0+c,b4,c0,yx2+4x(2)如图1,连接OB,OC,过点B作BEy轴于E,过点C作CFy轴于F,EBFC,ykx+4交yx2+4x于B,C,kx+4x2+4x,即x2+(k4)x+40,(k4)24
34、4k28k,x,或x,xBxC,EBxB,FCxC,4,解得 k9(交点不在y轴右边,不符题意,舍去)或k1k1(3)BOC90,EOB+FOC90,EOB+EBO90,EBOFOC,BEOOFC90,EBOFOC,EBFCEOFOxB,xC,即x2+(k4)x+40,xBxC4,xB+xC4k,B、C过ykx+4,yBkxB+4,yCkxC+4,EOyBkxB+4,OFyC(kxC+4)yBk+4,yCk+4,EOyBk+4,OFyCk4,4(kxB+4)(kxC+4)k2kBkC+k(kB+kC)+16,4k2+k(4k)+164,k方法二:(1)略(2)过点B作y轴垂线,垂足为E,设直线AC与x轴交点为H,lAC:ykx+4,当y0时,x,即H(,0),x或,BX,X,BY,Y,SAOBAOBE4Bx,SBOCOH(BYY),OH(BYY)34BX,k28k90,k11,k29,由图象可知k0,k1(3)以BC为直径的圆经过原点,OBOC,KOBKOC1,1,k【点评】本题考查了函数图象交点的性质、相似三角形性质、一元二次方程及圆的基本知识题目特殊,貌似思路不难,但若思路不对,计算异常复杂,题目所折射出来的思想,考生应好好理解掌握 第30页(共30页)