收藏 分销(赏)

2016年湖南省株洲市中考数学试卷(学生版).doc

上传人:Fis****915 文档编号:514731 上传时间:2023-10-29 格式:DOC 页数:6 大小:136KB 下载积分:8 金币
下载 相关 举报
2016年湖南省株洲市中考数学试卷(学生版).doc_第1页
第1页 / 共6页
2016年湖南省株洲市中考数学试卷(学生版).doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
2016年湖南省株洲市中考数学试卷 一、选择题(每小题只有一个正确答案,本题共10小题,共30分) 1.(3分)下列数中,﹣3的倒数是(  ) A.﹣ B. C.﹣3 D.3 2.(3分)下列等式错误的是(  ) A.(2mn)2=4m2n2 B.(﹣2mn)2=4m2n2 C.(2m2n2)3=8m6n6 D.(﹣2m2n2)3=﹣8m5n5 3.(3分)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是(  ) 队员 平均成绩 方差 甲 9.7 2.12 乙 9.6 0.56 丙 9.7 0.56 丁 9.6 1.34 A.甲 B.乙 C.丙 D.丁 4.(3分)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  ) A.50° B.60° C.70° D.80° 5.(3分)不等式的解集在数轴上表示为(  ) A. B. C. D. 6.(3分)在解方程时,方程两边同时乘以6,去分母后,正确的是(  ) A.2x﹣1+6x=3(3x+1) B.2(x﹣1)+6x=3(3x+1) C.2(x﹣1)+x=3(3x+1) D.(x﹣1)+x=3(x+1) 7.(3分)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是(  ) A.OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE 8.(3分)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有(  ) A.1 B.2 C.3 D.4 9.(3分)已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(  ) A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5 10.(3分)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是(  ) A.c<3 B.m≥ C.n≤2 D.b<1 二、填空题(本题共8小题,每题3分,共24分) 11.(3分)计算:3a﹣(2a﹣1)=   . 12.(3分)据民政部网站消息,截至2014年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为   . 13.(3分)从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率是   . 14.(3分)如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为   . 15.(3分)分解因式:(x﹣8)(x+2)+6x=   . 16.(3分)△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF=   度. 17.(3分)已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1•k2=   . 18.(3分)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=   . 三、解答题(本大题共8小题,共66分) 19.(6分)计算:. 20.(6分)先化简,再求值:,其中x=3. 21.(8分)某社区从2011年开始,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参加项目活动总人数进行统计,并绘制成每年参加总人数折线统计图和2015年各活动项目参与人数的扇形统计图,请你根据统计图解答下列题 (1)2015年比2011年增加   人; (2)请根据扇形统计图求出2015年参与跑步项目的人数; (3)组织者预计2016年参与人员人数将比2015年的人数增加15%,各活动项目参与人数的百分比与2016年相同,请根据以上统计结果,估计2016年参加太极拳的人数. 22.(8分)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等. (1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分? (2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么? (3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分? 23.(8分)已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点. (1)求证:△ADF≌△ABE; (2)若BE=1,求tan∠AED的值. 24.(8分)平行四边形ABCD的两个顶点A、C在反比例函数y=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点 (1)已知点A的坐标是(2,3),求k的值及C点的坐标; (2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离. 25.(10分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形 (1)求证:△DFB是等腰三角形; (2)若DA=AF,求证:CF⊥AB. 26.(12分)已知二次函数y=x2﹣(2k+1)x+k2+k(k>0) (1)当k=时,求这个二次函数的顶点坐标; (2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根; (3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服