收藏 分销(赏)

贵州省铜仁市2019年中考数学真题试题(含解析).doc

上传人:Fis****915 文档编号:504244 上传时间:2023-10-24 格式:DOC 页数:17 大小:992KB 下载积分:8 金币
下载 相关 举报
贵州省铜仁市2019年中考数学真题试题(含解析).doc_第1页
第1页 / 共17页
贵州省铜仁市2019年中考数学真题试题(含解析).doc_第2页
第2页 / 共17页


点击查看更多>>
资源描述
2019年贵州省铜仁市中考数学试卷 一、选择题(共10小题,每小题4分,满分40分) 1.(4分)2019的相反数是(  ) A. B.﹣ C.|2019| D.﹣2019 2.(4分)如图,如果∠1=∠3,∠2=60°,那么∠4的度数为(  ) A.60° B.100° C.120° D.130° 3.(4分)今年我市参加中考的学生约为56000人,56000用科学记数法表示为(  ) A.56×103 B.5.6×104 C.0.56×105 D.5.6×10﹣4 4.(4分)某班17名女同学的跳远成绩如下表所示: 成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90 人数 2 3 2 3 4 1 1 1 这些女同学跳远成绩的众数和中位数分别是(  ) A.1.70,1.75 B.1.75,1.70 C.1.70,1.70 D.1.75,1.725 5.(4分)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是(  ) A.360° B.540° C.630° D.720° 6.(4分)一元二次方程4x2﹣2x﹣1=0的根的情况为(  ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 7.(4分)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为(  ) A.12 B.14 C.24 D.21 8.(4分)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=(  ) A. B. C. D. 9.(4分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为(  ) A. B. C. D. 10.(4分)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是(  ) A.2 B.3 C.4 D.5 二、填空题:(本大题共8个小题,每小题4分,共32分) 11.(4分)因式分解:a2﹣9=   . 12.(4分)小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S小刘2=0.6,S小李2=1.4,那么两人中射击成绩比较稳定的是   ; 13.(4分)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为   ; 14.(4分)分式方程=的解为y=   . 15.(4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为   . 16.(4分)如图,在△ABC中,D是AC的中点,且BD⊥AC,ED∥BC,ED交AB于点E,BC=7cm,AC=6cm,则△AED的周长等于   cm. 17.(4分)如果不等式组的解集是x<a﹣4,则a的取值范围是   . 18.(4分)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是   .(n为正整数) 三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程) 19.(10分)(1)计算:|﹣|+(﹣1)2019+2sin30°+(﹣)0 (2)先化简,再求值:(﹣)÷,其中x=﹣2 20.(10分)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE. 求证:BD=CE. 21.(10分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)): (1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数); (2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少? 22.(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732) 四、(本大题满分12分) 23.(12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3. (1)求一次函数的表达式; (2)求△AOB的面积; (3)写出不等式kx+b>﹣的解集. 五、(本大题满分12分) 24.(12分)如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G. (1)求证:FG是⊙O的切线; (2)已知FG=2,求图中阴影部分的面积. 六、(本大题满分14分) 25.(14分)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点. (1)求该抛物线的表达式; (2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由. (3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标. 2019年贵州省铜仁市中考数学试卷 参考答案与试题解析 一、选择题(共10小题,每小题4分,满分40分) 1.【解答】解:2019的相反数是﹣2019, 故选:D. 2.【解答】解:∵∠1=∠3, ∴a∥b, ∴∠5=∠2=60°, ∴∠4=180°﹣60°=120°, 故选:C. 3.【解答】解:将56000用科学记数法表示为:5.6×104. 故选:B. 4.【解答】解:由表可知,1.75出现次数最多,所以众数为1.75; 由于一共调查了2+3+2+3+1+1+1=17人, 所以中位数为排序后的第9人,即:170. 故选:B. 5.【解答】解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案, 只有630不能被180整除,所以a+b不可能是630°. 故选:C. 6.【解答】解:∵△=(﹣2)2﹣4×4×(﹣1)=20>0, ∴一元二次方程4x2﹣2x﹣1=0有两个不相等的实数根. 故选:B. 7.【解答】解:∵BD⊥CD,BD=4,CD=3, ∴BC===5, ∵E、F、G、H分别是AB、AC、CD、BD的中点, ∴EH=FG=BC,EF=GH=AD, ∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC, 又∵AD=7, ∴四边形EFGH的周长=7+5=12. 故选:A. 8.【解答】解:∵四边形ABCD为菱形,AB=2,∠DAB=60° ∴AB=BC=CD=2,∠DCB=60° ∵CE=CD,CF=CB ∴CE=CF= ∴△CEF为等边三角形 ∴S△CEF== 故选:D. 9.【解答】解:当0≤x≤4时, ∵BO为△ABC的中线,EF∥AC, ∴BP为△BEF的中线,△BEF∽△BAC, ∴,即,解得y=, 同理可得,当4<x≤8时,y=(8﹣x). 故选:A. 10.【解答】解:∵正方形ABCD中,AB=6,E为AB的中点 ∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90° ∵△ADE沿DE翻折得到△FDE ∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90° ∴BE=EF=3,∠DFG=∠C=90° ∴∠EBF=∠EFB ∵∠AED+∠FED=∠EBF+∠EFB ∴∠DEF=∠EFB ∴BF∥ED 故结论①正确; ∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG ∴Rt△DFG≌Rt△DCG ∴结论②正确; ∵FH⊥BC,∠ABC=90° ∴AB∥FH,∠FHB=∠A=90° ∵∠EBF=∠BFH=∠AED ∴△FHB∽△EAD ∴结论③正确; ∵Rt△DFG≌Rt△DCG ∴FG=CG 设FG=CG=x,则BG=6﹣x,EG=3+x 在Rt△BEG中,由勾股定理得:32+(6﹣x)2=(3+x)2 解得:x=2 ∴BG=4 ∴tan∠GEB== 故结论④正确; ∵△FHB∽△EAD,且 ∴BH=2FH 设FH=a,则HG=4﹣2a 在Rt△FHG中,由勾股定理得:a2+(4﹣2a)2=22 解得:a=2(舍去)或a= ∴S△BFG=×4×=2.4 故结论⑤错误; 故选:C. 二、填空题:(本大题共8个小题,每小题4分,共32分) 11.【解答】解:a2﹣9=(a+3)(a﹣3). 12.【解答】解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等, ∴两人中射击成绩比较稳定的是小刘, 故答案为:小刘 13.【解答】解:∵四边形ABCD为⊙O的内接四边形, ∴∠DCE=∠A=100°, 故答案为:100° 14.【解答】解:去分母得:5y=3y﹣6, 解得:y=﹣3, 经检验y=﹣3是分式方程的解, 则分式方程的解为y=﹣3. 故答案为:﹣3 15.【解答】解:设这两年中投入资金的平均年增长率是x,由题意得: 5(1+x)2=7.2, 解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去). 答:这两年中投入资金的平均年增长率约是20%. 故答案是:20%. 16.【解答】解:∵D是AC的中点,且BD⊥AC, ∴AB=BC=7cm,AD=AC=3cm, ∵ED∥BC, ∴AE=BE=AB=3.5cm,ED=BC=3.5cm, ∴△AED的周长=AE+ED+AD=10cm. 故答案为:10. 17.【解答】解:解这个不等式组为x<a﹣4, 则3a+2≥a﹣4, 解这个不等式得a≥﹣3 故答案a≥﹣3. 18.【解答】解:第1个数为(﹣1)1•, 第2个数为(﹣1)2•, 第3个数为(﹣1)3•, 第4个数为(﹣1)4•, …, 所以这列数中的第n个数是(﹣1)n•. 故答案为(﹣1)n•. 三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程) 19.【解答】解:(1)|﹣|+(﹣1)2019+2sin30°+(﹣)0 =+(﹣1)+2×+1 =+(﹣1)+1+1 =; (2)(﹣)÷ = = = =, 当x=﹣2时,原式=. 20.【解答】证明:∵AB⊥AC,AD⊥AE, ∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°, ∴∠CAE=∠BAD. 又AB=AC,∠ABD=∠ACE, ∴△ABD≌△ACE(ASA). ∴BD=CE. 21.【解答】解:(1)该班的总人数为12÷24%=50(人), 足球科目人数为50×14%=7(人), 补全图形如下: (2)设排球为A,羽毛球为B,乒乓球为C.画树状图为: 共有12种等可能的结果数,其中有1人选修排球、1人选修羽毛球的占4种, 所以恰好有1人选修排球、1人选修羽毛球的概率==, 22.【解答】解:由题意得,∠A=30°,∠B=45°,AB=10km, 在Rt△APM和Rt△BPM中,tanA==,tanB==1, ∴AM==h,BM=h, ∵AM+BM=AB=10, ∴h+h=10, 解得:h=15﹣5≈6; 答:h约为6km. 四、(本大题满分12分) 23.【解答】解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点, 且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3, ∴3=﹣, 解得:x=﹣4, y=﹣=﹣4, 故B(﹣4,3),A(3,﹣4), 把A,B点代入y=kx+b得: , 解得:, 故直线解析式为:y=﹣x﹣1; (2)y=﹣x﹣1,当y=0时,x=﹣1, 故C点坐标为:(﹣1,0), 则△AOB的面积为:×1×3+×1×4=; (3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3. 五、(本大题满分12分) 24.【解答】(1)证明:连接OF,AO, ∵AB=AF=EF, ∴==, ∴∠ABF=∠AFB=∠EBF=30°, ∵OB=OF, ∴∠OBF=∠BFO=30°, ∴∠ABF=∠OFB, ∴AB∥OF, ∵FG⊥BA, ∴OF⊥FG, ∴FG是⊙O的切线; (2)解:∵==, ∴∠AOF=60°, ∵OA=OF, ∴△AOF是等边三角形, ∴∠AFO=60°, ∴∠AFG=30°, ∵FG=2, ∴AF=4, ∴AO=4, ∵AF∥BE, ∴S△ABF=S△AOF, ∴图中阴影部分的面积==. 六、(本大题满分14分) 25.【解答】解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得: ∴该抛物线的表达式为:y=x2﹣x﹣1. (2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1) ∵点C关于x轴的对称点为C1, ∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得, ∴直线C1B解析式为y=﹣x+1,设M(t,+1),则 E(t,0),F(0,+1) ∴S矩形MFOE=OE×OF=t(﹣t+1)=﹣(t﹣1)2+, ∵﹣<0, ∴当t=1时,S矩形MFOE最大值=,此时,M(1,);即点M为线段C1B中点时,S矩形MFOE最大. (3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况: ①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1), ∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍), P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0) ②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0), ∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1) ∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2, ∴P4(﹣2,0),Q4(2,0); 综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0). 17
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服