收藏 分销(赏)

2021年山东省烟台市中考数学真题解析版.doc

上传人:Fis****915 文档编号:502761 上传时间:2023-10-23 格式:DOC 页数:33 大小:908KB
下载 相关 举报
2021年山东省烟台市中考数学真题解析版.doc_第1页
第1页 / 共33页
2021年山东省烟台市中考数学真题解析版.doc_第2页
第2页 / 共33页
点击查看更多>>
资源描述
2021年山东省烟台市中考数学试卷 一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的 1.若x的相反数是3,则x的值是(  ) A.﹣3 B.﹣ C.3 D.±3 2.下列数学符号中,既是轴对称图形又是中心对称图形的是(  ) A. B. C. D. 3.下列计算正确的是(  ) A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a2÷a3=a 4.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是(  ) A. B. C. D. 5.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,5500万用科学记数法表示为(  ) A.0.55×108 B.5.5×107 C.55×106 D.5.5×103 6.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为(  ) A.45° B.60° C.75° D.85° 7.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为(  ) A.(2,2) B.(,2) C.(3,) D.(2,) 8.如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下: 按键的结果为m; 按键的结果为n; 按键的结果为k. 下列判断正确的是(  ) A.m=n B.n=k C.m=k D.m=n=k 9.已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是(  ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定 10.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为(  ) A. B. C. D. 11.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论: ①ac>0; ②当x>0时,y随x的增大而增大; ③3a+c=0; ④a+b≥am2+bm. 其中正确的个数有(  ) A.1个 B.2个 C.3个 D.4个 12.由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM=30°.若OA=16,则OG的长为(  ) A. B. C. D. 二、填空题(本大题共6个小题,每小题3分,满分18分) 13.若代数式在实数范围内有意义,则x的取值范围为    . 14.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为    米. 15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为    . 16.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为    米. (结果精确到1米,参考数据:≈1.41,≈1.73) 17.如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是    . 18.综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为    cm. 三、解答题(本大题共7个小题,满分66分 19.(6分)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值. 20.(8分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下: 甲班15名学员测试成绩(满分100分)统计如下: 87,84,88,76,93,87,73,98,86,87,79,85,84,85,98. 乙班15名学员测试成绩(满分100分)统计如下: 77,88,92,85,76,90,76,91,88,81,85,88,98,86,89 (1)按如表分数段整理两班测试成绩 班级 70.5~75.5 75.5~80.5 80.5~85.5 85.5~90.5 90.5~95.5 95.5~100.5 甲 1 2 a 5 1 2 乙 0 3 3 6 2 1 表中a=   ; (2)补全甲班15名学员测试成绩的频数分布直方图; (3)两班测试成绩的平均数、众数、中位数、方差如表所示: 班级 平均数 众数 中位数 方差 甲 86 x 86 44.8 乙 86 88 y 36.7 表中x=   ,y=   . (4)以上两个班级学员掌握党史相关知识的整体水平较好的是    班; (5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率. 21.(8分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC. (1)求k的值及线段BC的长; (2)点P为B点上方y轴上一点,当△POC与△PAC的面积相等时,请求出点P的坐标. 22.(9分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件. (1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元? (2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售? 23.(10分)如图,已知Rt△ABC中,∠C=90°. (1)请按如下要求完成尺规作图(不写作法,保留作图痕迹). ①作∠BAC的角平分线AD,交BC于点D; ②作线段AD的垂直平分线EF与AB相交于点O; ③以点O为圆心,以OD长为半径画圆,交边AB于点M. (2)在(1)的条件下,求证:BC是⊙O的切线; (3)若AM=4BM,AC=10,求⊙O的半径. 24.(11分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N. 【观察猜想】 (1)线段DE与AM之间的数量关系是    ,位置关系是    ; 【探究证明】 (2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由. 25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点. (1)求抛物线及直线BC的函数表达式; (2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值; (3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由. 2021年山东省烟台市中考数学试卷 参考答案与试题解析 一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的 1.若x的相反数是3,则x的值是(  ) A.﹣3 B.﹣ C.3 D.±3 【分析】只有符号不同的两个数叫做互为相反数. 【解答】解:﹣3的相反数是3, ∴x=﹣3. 故选:A. 2.下列数学符号中,既是轴对称图形又是中心对称图形的是(  ) A. B. C. D. 【分析】根据轴对称图形与中心对称图形的定义进行判断,即可求出答案. 【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不合题意; B.不是轴对称图形,是中心对称图形,故本选项不合题意; C.是轴对称图形,不是中心对称图形,故本选项不合题意; D.既是轴对称图形,又是中心对称图形,故本选项符合题意. 故选:D. 3.下列计算正确的是(  ) A.a2•a3=a6 B.a2+a3=a5 C.(a2)3=a6 D.a2÷a3=a 【分析】根据同底数幂的乘法,合并同类项,幂的乘方,同底数幂的除法法则进行计算,然后作出判断. 【解答】解:A.a2•a3=a5,故此选项不符合题意; B.a2与a3不是同类项,不能进行合并计算,故此选项不符合题意; C.(a2)3=a6,正确,故此选项符合题意; D.a2÷a3=,故此选项不符合题意, 故选:C. 4.一个正方体沿四条棱的中点切割掉一部分后,如图所示,则该几何体的左视图是(  ) A. B. C. D. 【分析】根据左视图是从左面看到的图形判定则可. 【解答】解:从左边看,是一个正方形,正方形的中间有一条横向的虚线. 故选:C. 5.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,5500万用科学记数法表示为(  ) A.0.55×108 B.5.5×107 C.55×106 D.5.5×103 【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可. 【解答】解:5500万=55000000=5.5×107. 故选:B. 6.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为(  ) A.45° B.60° C.75° D.85° 【分析】根据EF∥BC得出∠FDC=∠F=30°,进而得出∠α=∠FDC+∠C即可. 【解答】解:如图, ∵EF∥BC, ∴∠FDC=∠F=30°, ∴∠α=∠FDC+∠C=30°+45°=75°, 故选:C. 7.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为(  ) A.(2,2) B.(,2) C.(3,) D.(2,) 【分析】根据直角三角形的性质得出OB,OA的长,进而利用菱形的性质得出点的坐标即可. 【解答】解:∵菱形ABCD,∠BCD=120°, ∴∠ABC=60°, ∵B(﹣1,0), ∴OB=1,OA=,AB=2, ∴A(0,), ∴BC=AD=2, ∴C(1,0),D(2,), 故选:D. 8.如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下: 按键的结果为m; 按键的结果为n; 按键的结果为k. 下列判断正确的是(  ) A.m=n B.n=k C.m=k D.m=n=k 【分析】分别计算出m,n,k的值即可得出答案. 【解答】解:m=23﹣=8﹣4=4; n=﹣22=4﹣4=0; k=﹣cos60°=﹣=4; ∴m=k, 故选:C. 9.已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是(  ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定 【分析】先由数轴得出m,n与0的关系,再计算判别式的值即可判断. 【解答】解:由数轴得m>0,n<0,m+n<0, ∴mn<0, ∴△=(mn)2﹣4(m+n)>0, ∴方程有两个不相等的实数根. 故选:A. 10.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为(  ) A. B. C. D. 【分析】如图,将阴影部分分割成图形小三角形的大小,令小三角形的面积为a,分别表示出阴影部分的面积个正六边形的面积,根据概率公式求解即可. 【解答】解:如图所示,令S△ABC=a, 则S阴影=6a,S正六边形=18a, ∴将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为=, 故选:B. 11.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.下列结论: ①ac>0; ②当x>0时,y随x的增大而增大; ③3a+c=0; ④a+b≥am2+bm. 其中正确的个数有(  ) A.1个 B.2个 C.3个 D.4个 【分析】把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c,可得二次函数的解析式为:y=ax2﹣2ax﹣3a,由图象可知,函数图象开口向下,所以a<0,可得b和c的符号,及a和c的数量关系;由函数解析式可得函数对称轴为直线:x=﹣=1,根据函数的增减性和最值,可判断②和④的正确性. 【解答】解:把点A(﹣1,0),B(3,0)代入二次函数y=ax2+bx+c, 可得二次函数的解析式为:y=ax2﹣2ax﹣3a, ∵该函数开口方向向下, ∴a<0, ∴b=﹣2a>0,c=﹣3a>0, ∴ac<0,3a+c=0,①错误,③正确; ∵对称轴为直线:x=﹣=1, ∴x<1时,y随x的增大而增大,x>1时,y随x的增大而减小;②错误; ∴当x=1时,函数取得最大值,即对于任意的m,有a+b+c≥am2+bm+c, ∴a+b≥am2+bm,故④正确. 综上,正确的个数有2个, 故选:B. 12.由12个有公共顶点O的直角三角形拼成的图形如图所示,∠AOB=∠BOC=…=∠LOM=30°.若OA=16,则OG的长为(  ) A. B. C. D. 【分析】由AOB=∠BOC=…=∠LOM=30°,∠ABO=∠BCO=…=∠LMO=90°,可知AB:OB:OA=BC:OC:OB=…=FG:OG:OF=1::2,由此可求出OG的长. 【解答】解:由图可知,∠ABO=∠BCO=…=∠LMO=90°, ∵AOB=∠BOC=…=∠LOM=30°, ∴∠A=∠OBA=∠BCD=…=∠OLM=60°, ∴AB=OA,OB=AB=OA, 同理可得,OC=OB=()2OA, OD=OC=()3OA, … OG=OF=()6OA=()6×16=. 故选:A. 二、填空题(本大题共6个小题,每小题3分,满分18分) 13.若代数式在实数范围内有意义,则x的取值范围为  x≤2 . 【分析】二次根式的被开方数是非负数. 【解答】解:依题意,得 2﹣x≥0, 解得,x≤2. 故答案是:x≤2. 14.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为  3 米. 【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD. 【解答】解:由题意知:AB∥CD, 则∠BAE=∠C,∠B=∠CDE, ∴△ABE∽△CDE, ∴, ∴, ∴CD=3米, 故答案为:3. 15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为  2 . 【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,可求出幻方右下角及第二行中间的数字,再利用幻方中对角线上的数字之和为15,即可得出关于a的一元一次方程,解之即可得出结论. 【解答】解:幻方右下角的数字为15﹣8﹣3=4, 幻方第二行中间的数字为15﹣6﹣4=5. 依题意得:8+5+a=15, 解得:a=2. 故答案为:2. 16.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为  14 米. (结果精确到1米,参考数据:≈1.41,≈1.73) 【分析】过O点作OC⊥AB的延长线于C点,垂足为C,利用直角三角形的解法得出OC,进而解答即可. 【解答】解:过O点作OC⊥AB的延长线于C点,垂足为C, ∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°, ∴AC=45米,∠CAO=30°, ∴OC=AC•tan30°=(米), ∴旗杆的高度=40﹣15≈14(米), 故答案为:14. 17.如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是   . 【分析】连接AO并延长交⊙O于D,根据圆周角定理得到∠ACB=∠ADB,根据勾股定理求出AD,根据正弦的定义计算,得到答案. 【解答】解:如图,连接AO并延长交⊙O于D, 由圆周角定理得:∠ACB=∠ADB, 由勾股定理得:AD==2, ∴sin∠ACB=sin∠ADB===, 故答案为:. 18.综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为  22 cm. 【分析】延长AT交BC于点P,利用三角形的面积公式求出AP,求出BE,CD,DE,可得结论. 【解答】解:延长AT交BC于点P, ∵AP⊥BC, ∴•BC•AP=24, ∴×8×AP=24, ∴AP=6(cm), 由题意,AT=PT=3(cm), ∴BE=CD=PT=3(cm), ∵DE=BC=8cm, ∴矩形BCDE的周长为8+8+3+3=22(cm). 故答案为:22. 三、解答题(本大题共7个小题,满分66分 19.(6分)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2<x≤2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题. 【解答】解: =[]• =• = =, ∵﹣2<x≤2且(x+1)(x﹣1)≠0,2﹣x≠0, ∴x的整数值为﹣1,0,1,2且x≠±1,2, ∴x=0, 当x=0时,原式==﹣1. 20.(8分)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下: 甲班15名学员测试成绩(满分100分)统计如下: 87,84,88,76,93,87,73,98,86,87,79,85,84,85,98. 乙班15名学员测试成绩(满分100分)统计如下: 77,88,92,85,76,90,76,91,88,81,85,88,98,86,89 (1)按如表分数段整理两班测试成绩 班级 70.5~75.5 75.5~80.5 80.5~85.5 85.5~90.5 90.5~95.5 95.5~100.5 甲 1 2 a 5 1 2 乙 0 3 3 6 2 1 表中a= 4 ; (2)补全甲班15名学员测试成绩的频数分布直方图; (3)两班测试成绩的平均数、众数、中位数、方差如表所示: 班级 平均数 众数 中位数 方差 甲 86 x 86 44.8 乙 86 88 y 36.7 表中x= 87 ,y= 86 . (4)以上两个班级学员掌握党史相关知识的整体水平较好的是  乙 班; (5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率. 【分析】(1)由甲班15名学员的测试成绩即可求解; (2)由(1)的结果,补全甲班15名学员测试成绩的频数分布直方图即可; (3)由众数、中位数的定义求解即可; (4)从平均数、中位数、方差几个方面说明即可; (5)画树状图,共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种,再由概率公式求解即可. 【解答】解:(1)由题意得:a=4, 故答案为:4; (2)补全甲班15名学员测试成绩的频数分布直方图如下: (3)甲班15名学员测试成绩中,87分出现的次数最多, ∴x=87,由题意得:乙班15名学员测试成绩的中位数为86, 故答案为:87,86; (4)以上两个班级学员掌握党史相关知识的整体水平较好的是乙班,理由如下: ①甲、乙两个班的平均数相等,但乙班的中位数大于甲班的中位数; ②乙班的方差小于甲班的方差,因此乙班的成绩更稳定; 故答案为:乙; (5)把甲班2人记为A、B,乙班1人记为C, 画树状图如图: 共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种, ∴恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率为=. 21.(8分)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC. (1)求k的值及线段BC的长; (2)点P为B点上方y轴上一点,当△POC与△PAC的面积相等时,请求出点P的坐标. 【分析】(1)根据正比例函数的解析式求出A点坐标,由A在反比例函数上,可求出k,再根据AC=OC求出点C的坐标,即可得线段BC的长; (2)设点P(0,p),根据△POC与△PAC的面积相等,得出关于p的方程,解方程即可得点P的坐标. 【解答】解:(1)∵点A在正比例函数y=x上,AB⊥y轴,OB=4, ∵点B的坐标为(0,4), ∴点A的纵坐标是4,代入y=x,得x=8, ∴A(8,4), ∵点A在反比例函数y=(x>0)的图象上, ∴k=4×8=32, ∵点C在线段AB上,且AC=OC. 设点C(c,4), ∵OC==,AC=AB﹣BC=8﹣c, ∴=8﹣c,解得:c=3, ∴点C(3,4), ∴BC=3, ∴k=32,BC=3; (2)如图, 设点P(0,p), ∵点P为B点上方y轴上一点, ∴OP=p,BP=p﹣4, ∵A(8,4),C(3,4), ∴AC=8﹣3=5,BC=3, ∵△POC与△PAC的面积相等, ∴×3p=×5(p﹣4),解得:p=10, ∴P(0,10). 22.(9分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件. (1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元? (2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售? 【分析】(1)根据日利润=每件利润×日销售量,可求出售价为60元时的原利润,设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,根据日利润=每件利润×日销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论; (2)设该商品需要打x折销售,根据销售价格不超过50元,列出不等式求解即可. 【解答】(1)解:设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件, 依题意,得:(x﹣40)(140﹣2x)=(60﹣40)×20, 整理,得:x2﹣110x+3000=0, 解得:x1=50,x2=60(舍去). 答:售价应定为50元; (2)该商品需要打a折销售, 由题意,得,62.5×≤50, 解得:a≤8, 答:该商品至少需打8折销售. 23.(10分)如图,已知Rt△ABC中,∠C=90°. (1)请按如下要求完成尺规作图(不写作法,保留作图痕迹). ①作∠BAC的角平分线AD,交BC于点D; ②作线段AD的垂直平分线EF与AB相交于点O; ③以点O为圆心,以OD长为半径画圆,交边AB于点M. (2)在(1)的条件下,求证:BC是⊙O的切线; (3)若AM=4BM,AC=10,求⊙O的半径. 【分析】(1)①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线; ②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O; (2)根据线段垂直平分线及角平分线的性质推出角之间的关系,再根据平行线的判定得出OD∥AC,从而得出OD⊥BC即可; (3)根据题意得到线段之间的关系:OM=2BM,BO=3BM,AB=5BM,再根据相似三角形的性质求解即可. 【解答】解:(1)如图所示, ①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线; ②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O; ③如图,⊙O与AB交于点M; (2)证明:∵EF是AD的垂直平分线,且点O在AD上, ∴OA=OD, ∴∠OAD=∠ODA, ∵AD是∠BAC的平分线, ∴∠OAD=∠CAD, ∴∠ODA=∠CAD, ∴OD∥AC, ∵AC⊥BC, ∴OD⊥BC, 故BC是⊙O的切线. (3)根据题意可知OM=OA=OD=AM,AM=4BM, ∴OM=2BM,BO=3BM,AB=5BM, ∴==, 由(2)可知Rt△BOD与Rt△BAC有公共角∠B, ∴Rt△BOD∽Rt△BAC, ∴=,即=,解得DO=6, 故⊙O的半径为6. 24.(11分)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N. 【观察猜想】 (1)线段DE与AM之间的数量关系是  DE=2AM ,位置关系是  DE⊥AM ; 【探究证明】 (2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由. 【分析】(1)由正方形的性质得出AD=AB,AF=AE,∠DAE=∠BAF=90°,证明△DAE≌△BAF(SAS),由全等三角形的性质得出DE=BF,∠ADE=∠ABF,由直角三角形的性质可得出结论; (2)延长AM至点H,使得AM=MH,连接FH,证明△AMB≌△HMF(SAS),由全等三角形的性质得出AB=HF,∠ABM=∠HFM,证明△EAD≌△AFH(SAS),由全等三角形的性质得出DE=AH,则可得出答案. 【解答】解:(1)∵四边形ABCD和四边形AEGF都是正方形, ∴AD=AB,AF=AE,∠DAE=∠BAF=90°, ∴△DAE≌△BAF(SAS), ∴DE=BF,∠ADE=∠ABF, ∵∠ABF+∠AFB=90°, ∴∠ADE+∠AFB=90°, 在Rt△BAF中,M是BF的中点, ∴AM=FM=BM=BF, ∴DE=2AM. ∵AM=FM, ∴∠AFB=∠MAF, 又∵∠ADE+∠AFB=90°, ∴∠ADE+∠MAF=90°, ∴∠AND=180°﹣(∠ADE+∠MAF)=90°, 即AN⊥DN; 故答案为DE=2AM,DE⊥AM. (2)仍然成立, 证明如下:延长AM至点H,使得AM=MH,连接FH, ∵M是BF的中点, ∴BM=FM, 又∵∠AMB=∠HMF, ∴△AMB≌△HMF(SAS), ∴AB=HF,∠ABM=∠HFM, ∴AB∥HF, ∴∠HFG=∠AGF, ∵四边形ABCD和四边形AEGF是正方形, ∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF, ∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH, ∴△EAD≌△AFH(SAS), ∴DE=AH, 又∵AM=MH, ∴DE=AM+MH=2AM, ∵△EAD≌△AFH, ∴∠ADE=∠FHA, ∵△AMB≌△HMF, ∴∠FHA=∠BAM, ∴∠ADE=∠BAM, 又∵∠BAM+∠DAM=∠DAB=90°, ∴∠ADE+∠DAM=90°, ∴∠AND=180°﹣(∠ADE+∠DAM)=90°, 即AN⊥DN. 故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE⊥AM. 25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点. (1)求抛物线及直线BC的函数表达式; (2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值; (3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由. 【分析】(1)用待定系数法即可求解; (2)点A、B关于抛物线的对称轴对称,设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,进而求解; (3)①当点Q在点P的左侧时,证明△QME∽△ENP,则=tan∠EQP=tan∠OCA===,进而求解;②当点Q在点P的右侧时,同理可解. 【解答】解:(1)由点A的坐标知,OA=2, ∵OC=2OA=4,故点C的坐标为(0,4), 将点A、B、C的坐标代入抛物线表达式得:,解得, 故抛物线的表达式为y=﹣x+x+4; 将点B、C的坐标代入一次函数表达式得:,解得, 故直线BC的表达式为y=﹣x+4; (2)∵点A、B关于抛物线的对称轴对称, 设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小, 理由:由函数的对称性知,AF=BF, 则AF+FC=BF+FC=BC为最小, 当x=1时,y=﹣x+4=3,故点F(1,3), 由点B、C的坐标知,OB=OC=4, 则BC=BO=4, 即点F的坐标为(1,3)、FA+FC的最小值为4; (3)存在,理由: 设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4), ①当点Q在点P的左侧时, 如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M, 由题意得:∠PEQ=90°, ∴∠PEN+∠QEM=90°, ∵∠EQM+∠QEM=90°, ∴∠PEN=∠EQM, ∴∠QME=∠ENP=90°, ∴△QME∽△ENP, ∴=tan∠EQP=tan∠OCA===, 则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4, ∴==, 解得m=±(舍去负值), 当m=时,﹣m2+m+4=, 故点P的坐标为(,). ②当点Q在点P的右侧时, 分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M, 则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1, 同理可得:△QME∽△ENP, ∴=tan∠PQE=2, 即, 解得m=(舍去负值), 故m=, 故点P的坐标为(,), 故点P的坐标为(,)或(,).
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服