1、绝密启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知集合A=(𝑥|𝑥|2),B=2,0,1,2,则(A)0,1(B)1,0,1(C)2,0,1,2(D)1,0,1,2(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限(3)执行如图
2、所示的程序框图,输出的s值为(A)(B) (C)(D) (4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为(A) (B)(C) (D)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个
3、数为(A)1(B)2(C)3(D)4(7)在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O𝑥为始边,OP为终边,若,则P所在的圆弧是 (A) (B)(C)(D) (8)设集合则(A)对任意实数a, (B)对任意实数a,(2,1)(C)当且仅当a1,则当时,;当时,.所以在x=1处取得极小值.若,则当时,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当a=0时,令得x=1.随x的变化情况如下表:x1+0极大值在x=1处取得极大值,不合题意.(2)当a0时,令得.当,即a=1时,在上单调递增,无极值,不合题意.当,即0a1时,随x的变化情况如下表:x+00+极大值极小值在x=1处取得极小值,即a1满足题意.(3)当a0时,令得.随x的变化情况如下表:x0+0极小值极大值在x=1处取得极大值,不合题意.综上所述,a的取值范围为.20(共14分)【解析】()由题意得,所以,又,所以,所以,所以椭圆的标准方程为()设直线的方程为,由消去可得,则,即,设,则,则,易得当时,故的最大值为()设,则 , ,又,所以可设,直线的方程为,由消去可得,则,即,又,代入式可得,所以,所以,同理可得故,因为三点共线,所以,将点的坐标代入化简可得,即