1、2011年北京中考数学试题及答案2011年北京市高级中等学校招生考试数 学 试 卷 学校 姓名 准考证号 考生须知1本试卷共6页,共五道大题,25道小题,满分120分。考试时间120分钟。2在试卷和答题卡上准确填写学校名称、姓名和准考证号。3试题答案一律填涂或书写在答题卡上,在试卷上作答无效。4在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。5考试结束,将本试卷、答题卡和草稿纸一并交回。一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的1的绝对值是( )A B C D2我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 57
2、5 306人将665 575 306用科学记数法表示(保留三个有效数字)约为( )A66.6107 B0.666108 C6.66108 D6.661073下列图形中,即是中心对称又是轴对称图形的是( )A等边三角形 B平行四边形 C梯形 D矩形AOBCD4如图,在梯形ABCD中,ADBC,对角线AC、BD相交于点O,若AD1,BC3,则的值为( )A B C D5北京今年6月某日部分区县的高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32323032303229323032则这10个区县该日最高气温的人数和中位数分别是( )A32,32 B32,30 C30,32 D3
3、2,316一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )A B C D7抛物线yx26x5的顶点坐标为( )A(3,4) B(3,4) C(3,4) D(3,4)ABCED8如图,在ABC中,ACB90,BAC30,AB2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E设ADx,CEy,则下列图象中,能表示y与x的函数关系图象大致是( )ABCDOOOOxxxxyyyy111111112222二、填空题(本题共16分,每小题4分)9若分式的值为0,则x的值等于_10分解因
4、式:a310a225a_11若右图是某几何体的表面展开图,则这个几何体是_a11a12a13a14a15a21a22a23a24a25a31a32a33a34a35a41a42a43a44a45a51a52a53a54a5512在右表中,我们把第i行第j列的数记为aij(其中i,j都是不大于5的正整数),对于表中的每个数aij,规定如下:当ij时,aij1;当ij时,aij0例如:当i2,j1时,aija211按此规定,a13_;表中的25个数中,共有_个1;计算:a11ai1a12ai2a13ai3a14ai4a15ai5的值为_三、解答题(本题共30分,每小题5分)13计算:14解不等式:
5、4(x1)5x615已知a22abb20,求代数式a(a4b)(a2b)(a2b)的值ACBDFE16如图,点A、B、C、D在同一条直线上,BEDF,AF,ABFD求证:AEFCOyxA1117如图,在平面直角坐标系xOy中,一次函数y2x的图象与反比例函数y的图象的一个交点为A(1,n)(1)求反比例函数y的解析式;(2)若P是坐标轴上一点,且满足PAOA,直接写出点P的坐标18列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车已知小王家距上班地点18千米他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小
6、时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分)ABCED19如图,在ABC中,ACB90,D是BC的中点,DEBC,CEAD若AC2,CE4,求四边形ACEB的周长AOBFCDE20如图,在ABC,ABAC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,且CBFCAB(1)求证:直线BF是O的切线;(2)若AB5,sinCBF,求BC和BF的长21以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分北京市20012010年
7、私人轿车拥有量的年增长率统计图北京市20012010年私人轿车拥有量统计图年增长率/%轿车拥有量/万辆年份年份00200620062007200820092010200720082009201050100150200250300121146217276222119252752530101520请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)?(2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关如:一辆排量为1.6L的轿车,如果一年行驶1万千米,这
8、一年,它碳排放量约为2.7吨于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示排量(L)小于1.61.61.8大于1.8数量(辆)29753115如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?22阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD中,ADBC,对角线AC、BD相交于点O若梯形ABCD的面积为1,试求以AC、BD、ADBC的长度为三边长的三角形的面积BBCADOADCEO图2图1ABDCEF图3小伟是这样思考的:要想解决这个问题,首先应想办法移动这些
9、分散的线段,构造一个三角形,再计算其面积即可他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题他的方法是过点D作AC的平行线交BC的延长线于点E,得到的BDE即是以AC、BD、ADBC的长度为三边长的三角形(如图2)请你回答:图2中BDE的面积等于_参考小伟同学的思考问题的方法,解决下列问题:如图3,ABC的三条中线分别为AD、BE、CF (1)在图3中利用图形变换画出并指明以AD、BE、CF的长度为三边长的一个三角形(保留画图痕迹);(2)若ABC的面积为1,则以AD、BE、CF的长度为三边长的三角形的面积等于_五、解答题(本题共22分)Oyx355323(7分)在平面直角坐标
10、系xOy中,二次函数ymx2(m3)x3(m0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A的坐标;(2)当ABC45时,求m的值;(3)已知一次函数ykxb,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数ymx2(m3)x3(m0)的图象于N若只有当2n2时,点M位于点N的上方,求这个一次函数的解析式24(7分)在ABCD中,BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中,证明:CECF;(2)若ABC90,G是EF的中点(如图2),直接写出BDG的度数;(3)若ABC120,FG
11、CE,FGCE,分别连结DB、DG(如图3),求BDG的度数BBADADCCEFEGFABCDEGF图1图2图325(7分)如图,在平面直角坐标系xOy中,我把由两条射线AE、BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段)已知A(1,0),B(1,0),AEBF,且半圆与y轴的交点D在射线AE的反向延长线上(1)求两条射线AE、BF所在直线的距离;(2)当一次函数yxb的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数yxb的图象与图形C恰好只有两个公共点时,写出b的取值范围;EADFOBxy(3)已知AMPQ(四个顶点A、M、P、Q按顺时针方向排列)的各顶点
12、都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围2011年北京市高级中等学校招生考试数学试卷参考答案一、选择题题号12345678答案DCDBABAB二、填空题题号9101112答案8圆柱0151三、解答题解: 解:去括号,得 移项,得 合并,得 解得 所以原不等式的解集是解: 原式证明: 在和中, . 解: 点在一次函数的图象上,点的坐标为点的反比例函数的图象上,反比例函数的解析式为 点的坐标为或解:设小王用自驾车方式上班平均每小时行驶千米 依题意,得 解得 经检验,是原方程的解,且符合题意答:小王用自驾车方式上班平均每小时行驶27千米四、解答题解: . 又 四边形是平行四边形
13、. 在中,由勾股定理得. 是的中点, .在中,由勾股定理得.是的中点,.四边形的周长. 证明:连结. 是的直径, . . . . . 即. 是的直径, 直线是的切线 解:过点作于点.由中,由勾股定理得.在中,可求得.,.解: (万辆).所以2008年北京市私人轿车拥有量约是174万辆. 如右图. (万吨). 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为万吨.解:的面积等于 1 . 如图. 以、的长度为三边长的一个三角形是. 以、的长度为三边长的三角形的面积等于.五、解答题解: 点是二次函数的图象与轴的交点,令即.解得.又点在点左侧且点的坐标为. 由可知点的坐标为.二次函数
14、的图象与轴交于点点的坐标为.,. 由得,二次函数解析式为.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为和2,由此可得交点坐标为和.将交点坐标分别代入一次函数解析式中,得解得一次函数的解析式为. 证明:如图1. 平分 . 四边形是平行四边形, . . . . . 解:分别连结、(如图2). 且 四边形是平行四边形. 由得 是菱形. . 是等边三角形. . 由及平分可得.在中,. 由得.解: 分别连结、,则点在直线上,如图1. 点在以为直径的半圆上, .在中,由勾股定理得.两条射线、所在直线的距离为. 当一次函数的图象与图形恰好只有一个公共点时,的取值是或; 假设存在满足
15、题意的,根据点的位置,分以下四种情况讨论: 当点在射线上时,如图2. 四点按顺时针方向排列, 直线必在直线的上方. 两点都在上,且不与点重合. . 且 . .当点在(不包括点)上时,如图3. 四点按顺针方向排列, 直线必在直线的下方. 此时,不存在满足题意的平行四边形.当点在上时, 设的中点为则当点在(不包括点)上时,如图4过点作的垂线交于点垂足为点可得是的中点连结并延长交直线于点为的中点,可证为的中点四边形为满足题意的平行四边形 2)当点在上时,如图5 直线必在直线的下方 此时,不存在满足题意的平行四边形当点的射线(不包括点)上时,如图6直线必在直线的下方此时,不存在满足题意的平行四边形综上
16、,点的横坐标的取值范围是或2011年北京中考数学试题答案一 选择题1.D 2. C 3.D 4. B 5. A 6. B 7. A 8. B二 填空题9.8 10. 11. 圆柱 12. 0 ;15 ;1三 计算题13. 14. x2 15. 0 16. (SAS)17. (1) (2)P(, 0 ) 或P(-2 , 0 )18. x = 27km/h19. 20. (1)略 (2) BC=2, BF=20/321. (1)174 (2) 略 (3) 372.622. 1 (1)(2) 3/423. (1) A(1 , 0 ) (2)m=1 (3)y= 2x+124. (2), 为等腰直角三角
17、形,; (3) , 为等边三角形,。25. (1)(2)1b1或b=; 1b(3)一、考试范围不变 2011年同去年考试范围没有变化,以“课程目标”与“内容标准”为依据,适当兼顾北京市现行不同版本教材如北师大版和北京市课改版等的教学实际情况。 二、试卷结构依然保持一贯风格 1、试卷分数、考试时间 试卷还是由两卷组成,第一卷是选择题,第二卷是非选择题,满分为120分;其中选择题约32分,填空题约16分,解答题约72分;考试时间120分钟。 2、试卷知识内容的分布 代数部分约60分,空间与图形约46分,统计与概率占14分。 3、试卷题型的难度分布 较易试题约60分,中等试题约36分,较难试题约24
18、分,比例是5:3:2。 三、考试内容和要求 考试要求仍为三个层次,分别用A、B、C表述,其中A层次对应原基本要求;B层次对应原略高要求;C层次对应原较高要求。在各层次的表述中删去了过程性目标的表述,突出了考试的性质,使三个层次的界定更符合课标精神,更利于操作,更合理。 A层次:能对所学知识有初步的认识,能举例说明对象的有关特征,并能在具体情境中进行辨认,或能描述对象的特征,并能指出有关对象的区别或联系。 B层次:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。 C层次:能通过观察、实验、推理等活动,发现对象的某些特征或与其他对象的区别和联系;能综合运用知识,
19、灵活、合理地选择与运用有关的方法,实现对特定的数学问题或实际问题的分析解决。 1、数与代数部分(21处变化) (1)数与式:与2010年相比一共有11处细微变化,其中有10处变化都是针对文字表述的变化,使得原来的问题表述更加清晰和准确,考点没有变化。其中数轴考点的B级要求“会借助数轴比较有理数的大小”去掉了。 (2)方程与不等式:与2010年相比一共有5处细微变化,其中有3处变化是简化文字表述。方程考点的C级要求“能运用方程解决有关问题”去掉了。一元二次方程的解法部分的C级要求中对于“会用配方法对代数式作简单的变形”去掉了。 (3)函数:与2010年相比一共有5处细微变化,其中有4处变化是简化
20、文字表述,考察方式基本不变。在二次函数考点的B级要求中,增加了“会根据二次函数的解析式求其图像与坐标轴的交点坐标”,值得关注! 2、图形与坐标(8处变化) (1)平面直角坐标系:与2010年相比一共有3处变化。B级要求中对“描述物体的位置”做了简化;增加了“在同一直角坐标系中,会求图形变换后点的坐标”。C级要求中“灵活运用不同的方式确定物体在坐标平面内的位置”做了表述上的变化,使其更准确。 (2)三角形:与2010年相比有1处变化,在B要求中“会证明三角形的中位线定理”改成“掌握三角形的中位线定理”,做了简单的文字表述的变化。 (3)弧长和扇形:与2010年相比有2处变化,分别在B级要求中去掉
21、了“简单”两个字,简单文字表述的变化告诉我们考察点可能会“不简单”,关于弧长和扇形面积的计算要求同学们掌握。 (4)圆与圆的位置关系:与2010年相比有1处变化,去掉了B级要求的“利用圆与圆的位置关系解决简单问题”,这部分应该不会考到了。 (5)轴对称:与2010年相比有1处变化,对B级要求的文字表述做了精简,C级要求“能运用轴对称的知识解决简单问题”依然是命题热点! 3、统计与概率保持不变 这部分内容的考试说明和2010年完全一样,一字不差,没有变化。 四、综合分析和评价 2011年北京中考数学考试说明和去年的考试说明相比较,共有29处变化,其中大多数变化都是属于文字表述的变化,使其更加准确
22、和清晰。去掉了“会借助数轴比较有理数的大小”、 “能运用方程解决有关问题”、“会用配方法对代数式作简单的变形”、“利用圆与圆的位置关系解决简单问题”等2个B级和2个C级要求;增加了“会根据二次函数的解析式求其图像与坐标轴的交点坐标”、“在同一直角坐标系中,会求图形变换后点的坐标”这两个B级要求,值得关注! 整体来看,在考察内容上变化不大。在不变的基础上,要特别重视C级要求的考点,加强练习,熟练掌握。以下几个要点必须掌握: (1)“会用归纳和类比进行简单的推理”,历年填空题第12题和解答题第22题均会涉及。对这类题型要进行专项练习,总结解题方法和技巧。 (2)“灵活运用不同方式确定物体在坐标平面
23、内的位置”,即用不同方法求坐标系内某个点的坐标,每年必考,而且作为最后三道大题的基本考察点,必须牢牢掌握! (3)“会运用两点之间的距离解决有关问题”,涉及到最短路径问题,2007年和2009年中考均考到了,而且近两年全国中考中也频频出现,必须对这类题型进行专项练习! (4)“能运用轴对称的知识解决简单问题”、“能运用平移的知识解决简单问题”、“能运用旋转的知识解决简单问题”;近几年北京中考甚至全国中考都是以“对称或翻折、平移以及旋转”作为命题热点,2007年倒数第三题涉及平移思想,2008年北京中考最后一题涉及旋转思想,2009年北京中考倒数第二题设计旋转思想,2010年最后一题涉及对称思想等等。这类图形的变换问题,明年必将继续考察,同学们要做专门的练习,注意总结和归纳,寻找解题规律,得出解题技巧!