资源描述
部编人教版八年级数学下册期中试卷(可打印)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A. B. C. D.
2.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.; B.;
C.; D..
3.若一个多边形的内角和为1080°,则这个多边形的边数为( )
A.6 B.7 C.8 D.9
4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=( )
A.105° B.115° C.125° D.135°
5.下列方程中,是关于x的一元二次方程的是( )
A.ax2+bx+c=0(a,b,c为常数) B.x2﹣x﹣2=0
C.﹣2=0 D.x2+2x=x2﹣1
6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( )
A.x=2 B.x=0 C.x=﹣1 D.x=﹣3
7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为( )
A.①②③④ B.①②④ C.①③④ D.①②③
8.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
A. B.
C. D.
9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
10.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )
A.30° B.32° C.42° D.58°
二、填空题(本大题共6小题,每小题3分,共18分)
1.已知、为两个连续的整数,且,则__________.
2.方程的两个根为、,则的值等于__________.
3.分解因式:-x=__________.
4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=________.
5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.
6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
三、解答题(本大题共6小题,共72分)
1.解不等式
(1) (2)
2.先化简,再求值:,且x为满足﹣3<x<2的整数.
3.已知关于x的方程.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
5.如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O.
(1)求边AB的长;
(2)求∠BAC的度数;
(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.
6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、A
2、B
3、C
4、B
5、B
6、D
7、C
8、C
9、C
10、B
二、填空题(本大题共6小题,每小题3分,共18分)
1、7
2、3.
3、x(x+1)(x-1)
4、
5、3
6、8
三、解答题(本大题共6小题,共72分)
1、(1);(2)
2、-5
3、(1),;(2)略.
4、(1)略;(2)结论:四边形ACDF是矩形.理由见解析.
5、(1)2;(2) ;(3)见详解
6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
7 / 7
展开阅读全文