收藏 分销(赏)

2011年四川省乐山市中考数学试卷.doc

上传人:Fis****915 文档编号:494159 上传时间:2023-10-19 格式:DOC 页数:27 大小:481.50KB
下载 相关 举报
2011年四川省乐山市中考数学试卷.doc_第1页
第1页 / 共27页
2011年四川省乐山市中考数学试卷.doc_第2页
第2页 / 共27页
2011年四川省乐山市中考数学试卷.doc_第3页
第3页 / 共27页
2011年四川省乐山市中考数学试卷.doc_第4页
第4页 / 共27页
2011年四川省乐山市中考数学试卷.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、2011年四川省乐山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一个选项符合题目要求1(3分)小明家冰箱冷冻室的温度为5,调高4后的温度为()A4B9C1D92(3分)如图,在44的正方形网格中,tan()A1B2CD3(3分)下列函数中,自变量x的取值范围为x1的是()ABCD4(3分)如图,在正方体ABCDA1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是()ABCD5(3分)将抛物线yx2向左平移2个单位后,得到的抛物线的解析式是()Ay(x+2)2Byx2+2

2、Cy(x2)2Dyx226(3分)如图,CD是O的弦,直径AB过CD的中点M,若BOC40,则ABD()A40B60C70D807(3分)如图,直角三角板ABC的斜边AB12cm,A30,将三角板ABC绕C顺时针旋转90至三角板ABC的位置后,再沿CB方向向左平移,使点B落在原三角板ABC的斜边AB上,则三角板ABC平移的距离为()A6cmB4cmC(6)cmD()cm8(3分)已知一次函数yax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x1)b0的解集为()Ax1Bx1Cx1Dx19(3分)如图,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF

3、于点H,CGAE交BF于点G下列结论:tanHBEcotHEB;CGBFBCCF;BHFG;其中正确的序号是()ABCD10(3分)如图,直线y6x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F则AFBE()A8B6C4D二、填空题:本大题共6小题,每小题3分,共18分把答案填在题中的横线上11(3分)当x 时,12(3分)体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元则代数式5003a2b表示的数为 13(3分)数轴上点A、B的位置如图所示,若点B关于点A的对称点

4、为C,则点C表示的数为 14(3分)如图是小强同学根据乐山城区某天上午和下午四个整时点的气温绘制成的折线图请你回答:该天上午和下午的气温哪个更稳定?答: ;理由是 15(3分)若m为正实数,且m3,则m2 16(3分)如图,已知AOB,在射线OA、OB上分别取点OA1OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2B1A2,连接A2B2按此规律上去,记A2B1B21,A3B2B32,An+1BnBn+1n,则(1)1 ;(2)n 三、本大题共3小题,每小题9分,共27分17(9分)计算:|2|+()1+18(9分)如图,在直角ABC中,C90,CAB的平分线AD交BC于

5、D,若DE垂直平分AB,求B的度数19(9分)已知关于x、y的方程组的解满足不等式x+y3,求实数a的取值范围四、本大题共3小题,每小题10分,共30分20(10分)如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AEDF求证:BECF21(10分)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:x(页)1002004001000y(元)4080160400(1)若y与x满足初中学过的某一函数关系,求函数的解析式;(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费则乙复印社每月收费y(元)与复印页数x(页)的函数关系

6、为 ;(3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?22(10分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y(1)计算由x、y确定的点(x,y)在函数yx+6图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy6,则小明胜;若x、y满足xy6,则小红胜这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?五、本大题共2小题,每小题10分,共20分,其中第23

7、题为选做题23(10分)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分题甲:已知关于x的方程x2+2(a1)x+a27a40的两根为x1、x2,且满足x1x23x13x220求的值题乙:如图,在梯形ABCD中,ADBC,对角线AC、BD相交于点O,AD2,BCBD3,AC4(1)求证:ACBD;(2)求AOB的面积我选做的是 题24(10分)如图,D为O上一点,点C在直径BA的延长线上,且CDACBD(1)求证:CD是O的切线;(2)过点B作O的切线交CD的延长线于点E,若BC6,tanCDA,求BE的长六、本大题共2小题,第25题12分,第26题13分,共计25分25(12分)如

8、图(1),在直角ABC中,ACB90,CDAB,垂足为D,点E在AC上,BE交CD于点G,EFBE交AB于点F,若ACmBC,CEnEA(m,n为实数)试探究线段EF与EG的数量关系(1)如图(2),当m1,n1时,EF与EG的数量关系是 证明:(2)如图(3),当m1,n为任意实数时,EF与EG的数量关系是 证明:(3)如图(1),当m,n均为任意实数时,EF与EG的数量关系是 (写出关系式,不必证明)26(13分)已知顶点为A(1,5)的抛物线yax2+bx+c经过点B(5,1)(1)求抛物线的解析式;(2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD的最小周长;(3

9、)在(2)中,当四边形ABCD的周长最小时,作直线CD设点P(x,y)(x0)是直线yx上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PQR当PQR与直线CD有公共点时,求x的取值范围;在的条件下,记PQR与COD的公共部分的面积为S求S关于x的函数关系式,并求S的最大值2011年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一个选项符合题目要求1【分析】原来的温度为5,调高4,实际就是转换成有理数的加法运算【解答】解:5+41故选:C【点评】本题主要考查从实际问题抽象出有理数的加法运算2【

10、分析】求一个角的正切值,可将其转化到直角三角形中,利用直角三角函数关系解答【解答】解:如图,在直角ACB中,令AB2,则BC1;tan2;故选:B【点评】本题考查锐角三角函数的定义及运用,可将其转化到直角三角形中解答,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边3【分析】根据函数自变量的取值得到x1的取值的选项即可【解答】解:A、自变量的取值为x1,不符合题意;B、自变量的取值为x0,不符合题意;C、自变量的取值为x1,不符合题意;D、自变量的取值为x1,符合题意故选:D【点评】考查函数自变量取值范围的应用;考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数4【分

11、析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中【解答】解:从上面看易得1个正方形,但上面少了一个角,在俯视图中,右下角有一条线段故选:B【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图5【分析】易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线【解答】解:原抛物线的顶点为(0,0),新抛物线的顶点为(2,0),设新抛物线的解析式为y(xh)2+k,新抛物线解析式为y(x+2)2,故选:A【点评】考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;左右平移只改变顶点的横坐标,左加右减6【分析】B

12、OC与BDC为所对的圆心角与圆周角,根据圆周角定理可求BDC,由垂径定理可知ABCD,在RtBDM中,由互余关系可求ABD【解答】解:BOC与BDC为所对的圆心角与圆周角,BDCBOC20,CD是O的弦,直径AB过CD的中点M,ABCD,在RtBDM中,ABD90BDC70故选:C【点评】本题考查了垂径定理,圆周角定理的运用关键是由圆周角定理得出BOC与BDC的关系7【分析】如图,过B作BDAC,垂足为B,则三角板ABC平移的距离为BD的长,根据ABACBC,A30,在RtABD中,解直角三角形求BD即可【解答】解:如图,过B作BDAC,垂足为B,在RtABC中,AB12,A30,BCAB6,

13、ACABcos306,由旋转的性质可知BCBC6,ABACBC66,在RtABD中,A30,BDABtan30(66)(62)cm故选:C【点评】本题考查了旋转的性质,30直角三角形的性质,平移的问题关键是找出表示平移长度的线段,把问题集中在小直角三角形中求解8【分析】根据一次函数yax+b的图象过第一、二、四象限,得到b0,a0,把(2,0)代入解析式yax+b求出2,解a(x1)b0,得x1,代入即可求出答案【解答】解:一次函数yax+b的图象过第一、二、四象限,b0,a0,把(2,0)代入解析式yax+b得:02a+b,解得:2ab2,a(x1)b0,a(x1)b,a0,x1,x1,故选

14、:A【点评】本题主要考查对一次函数与一元一次不等式的关系,一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式等知识点的理解和掌握,能根据一次函数的性质得出a、b的正负,并正确地解不等式是解此题的关键9【分析】根据正方形的性质求证BHE为直角三角形即可得出结论;由求证CGFBCF利用其对应边成比例即可求得结论;由求证BHECGF即可得出结论,利用相似三角形对应边成比例即可求得结论【解答】解:在正方形ABCD中,E、F分别是边BC、CD的中点,RtABERtBCF,BEACFB,CGAE,GCBAEBCFGGCB,CFG+GCF90即CGF为直角三角形,CGAE交BF于点G,BHE也为直

15、角三角形,tanHBEcotHEB;正确由可得CGFBCF,CGBFBCCF,正确;由得BHECGF,BHCG,而不是BHFGBHFG错误;BCGBFC,即BC2BGBF,同理可得BCFCGF,可得CF2BFGF,正确,综上所述,正确的有故选:D【点评】此题主要考查相似三角形的判定与性质,全等三角形的判定与性质,锐角三角函数的定义等知识点的理解和掌握,步骤繁琐,有一定的拔高难度,属于中档题10【分析】首先作辅助线:过点E作ECOB于C,过点F作FDOA于D,然后由直线y6x交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OAOB,即可得AOB,BCE,ADF是等腰直角三角形,则可得AFBE

16、CEDF2CEDF,又由四边形CEPN与MDFP是矩形,可得CEPN,DFPM,根据反比例函数的性质即可求得答案【解答】解:过点E作ECOB于C,过点F作FDOA于D,直线y6x交x轴、y轴于A、B两点,A(6,0),B(0,6),OAOB,ABOBAO45,BCCE,ADDF,PMOA,PNOB,四边形CEPN与MDFP是矩形,CEPN,DFPM,P是反比例函数图象上的一点,PNPM4,CEDF4,在RtBCE中,BECE,在RtADF中,AFDF,AFBECEDF2CEDF8故选:A【点评】此题考查了反比例函数的性质,以及矩形、等腰直角三角形的性质解题的关键是注意数形结合与转化思想的应用二

17、、填空题:本大题共6小题,每小题3分,共18分把答案填在题中的横线上11【分析】首先去掉分母,然后解一元一次方程,最后检验即可求解【解答】解:,去分母得 x21,x3,检验:当x3时,x20,原方程的根为x3故答案为:3【点评】此题主要考查了解分式方程,其中:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根12【分析】本题需先根据买一个足球a元,一个篮球b元的条件,表示出3a和2b的意义,最后得出正确答案即可【解答】解:买一个足球a元,一个篮球b元3a表示委员买了3个足球2b表示买了2个篮球代数式5003a2b:表示委员买了3个足球、2个篮

18、球,剩余的经费故答案为:体育委员买了3个足球、2个篮球,剩余的经费【点评】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键13【分析】点A表示的数是1,点B表示的数是3,所以,|AB|4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|4,即,设点C表示的数为x,则,1x4,解出即可解答;【解答】解:如图,点A表示的数是1,点B表示的数是3,所以,|AB|4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|4,设点C表示的数为x,则,1x4,x5;故答案为:5【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,

19、体现了数形结合的优点14【分析】方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算【解答】解:上(18+19+21+22)420,下(22.5+20+19+18.5)420,S上2(1820)2+(1920)2+(2120)2+(2220)242.5,S下2(22.520)2+(2020)2+(1920)2+(18.520)242.375,S上2S下2,下午的气温更稳定故答案为:下午;因为上午的方差大于下午的方差;【点评】此题主要考查了方差的计算方法,方差是各变量值与其平均值的差平方的平均数,它是测算数值型数据离散程度的最重要的

20、方法15【分析】由,得m23m10,即,因为m为正实数,可得出m的值,代入,解答出即可;【解答】解:法一:由得,得m23m10,即,m1,m2,因为m为正实数,m,()()3(),3,;法二:由平方得:m2+29,m2+213,即(m+)213,又m为正实数,m+,则(m+)(m)3故答案为:【点评】本题考查了完全平方公式、平方差公式,求出m的值代入前,一定要把代数式分解完全,可简化计算步骤16【分析】设A1B1Ox,根据等腰三角形性质和三角形内角和定理得+2x180,x1801,即可求得1;同理求得2;即可发现其中的规律,按照此规律即可求得答案【解答】解:(1)设A1B1Ox,则+2x180

21、,x1801,1;(2)设A2B2B1y,则2+y180,1+2y180,2得:221180,2;n故答案为:(1);(2)n【点评】此题主要考查学生对等腰三角形性质和三角形内角和定理的理解和掌握,解答此题的关键是总结归纳出规律三、本大题共3小题,每小题9分,共27分17【分析】根据绝对值的性质,特殊角的三角函数值,负指数幂以及根式的性质即可解答本题【解答】解:原式2+3+2,5【点评】本题考查了绝对值的性质,特殊角的三角函数值,负指数幂以及根式的性质,难度适中18【分析】根据DE垂直平分AB,求证DAEB,再利用角平分线的性质和三角形内角和定理,即可求得B的度数【解答】解:在直角ABC中,C

22、90,CAB的平分线AD交BC于D,DAECAB(90B),DE垂直平分AB,ADBD,DAEB,DAECAB(90B)B,3B90,B30答:若DE垂直平分AB,B的度数为30【点评】此题本题考查的知识点为线段垂直平分线的性质,角平分线的性质,三角形内角和定理等知识点,比较简单,适合学生的训练19【分析】先解方程组,求得x、y的值,再根据x+y3,解不等式即可【解答】解:,+得,3x6a+3,解得x2a+1,将x2a+1代入得,y2a2,x+y3,2a+1+2a23,即4a4,a1【点评】本题是一元一次不等式和二元一次方程组的综合题,是中档题,难度适中四、本大题共3小题,每小题10分,共30

23、分20【分析】根据矩形对角线的性质,矩形对角线互相平分且相等,可知EOFO,BOCO,BOECOF,可知BOECOF,即可得出BECF【解答】证明:矩形ABCD的对角线为AC和BD,AOCOBODO,E、F分别是矩形ABCD的对角线AC和BD上的点,AEDF,EOFO,在BOE和COF中,BOECOF(SAS),BECF【点评】本题考查了矩形对角线互相平分且相等,全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中21【分析】(1)待定系数法设一次函数关系式,把任意两点代入,求得相应的函数解析式,看其余点的坐标是否适合即可(2)根据乙复印社每月收费承包费+按每页0.15元的复印费用,可

24、得相应的函数解析式;(3)先画出函数图象,找到交点坐标,即可作出判断【解答】解:(1)设解析式为ykx+b,将(100,40),(200,80)代入得,解得,故y0.4x(x0且为整数);(2)乙复印社每月收费y(元)与复印页数x(页)的函数关系为:y0.15x+200(x0且为整数)(3)作图如下,由图形可知每月复印页数在1200左右应选择乙复印社【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的作图能力注意自变量的取值范围不能遗漏22【分析】(1)画树形图,展示所有可能的12种结果,其中有点(2,4),(4,2)满足条件,根据概率的概念计算即

25、可;(2)先根据概率的概念分别计算出P(小明胜);P(小红胜);判断游戏规则不公平然后修改游戏规则,使它们的概率相等【解答】解:(1)画树形图:所以共有12个点:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其中满足yx+6的点有(2,4),(4,2),所以点(x,y)在函数yx+6图象上的概率;(2)满足xy6的点有(2,4),(4,2),(4,3),(3,4),共4个;满足xy6的点有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6个,所以P(小明胜);P(小红胜)

26、;,游戏规则不公平游戏规则可改为:若x、y满足xy6,则小明胜;若x、y满足xy6,则小红胜【点评】本题考查了关于游戏公平性的问题:先利用图表或树形图展示所有可能的结果数,然后计算出两个事件的概率,若它们的概率相等,则游戏公平;若它们的概率不相等,则游戏不公平五、本大题共2小题,每小题10分,共20分,其中第23题为选做题23【分析】甲:首先利用根与系数的关系求得x1+x2,x1x2的值,然后代入x1x23x13x220,即可求得a的值,然后化简,代入a的值即可求得答案;乙:(1)过点D作DEAC,交BC的延长线于E,即可证得四边形ACED是平行四边形,则可求得BD,BE,DE的长,由勾股定理

27、的逆定理即可证得BDDE,则可证得BDAC;(2)首先作DFBC,由SDBCBEDFBDDE,即可求得DF的值,求得ABC的面积,又由AODCOB,求得OA与OC的比值,根据同高的三角形的面积比等于对应底的比即可求得答案【解答】解:题甲:关于x的方程x2+2(a1)x+a27a40的两根为x1、x2,x1+x22(a1)22a,x1x2a27a4,x1x23x13x22x1x23(x1+x2)2a27a43(22a)2a2a120,解得:a3或a4,当a3时,原方程化为x28x+260,400,此时原方程无解,a3不合题意,应舍去当a4时,原方程化为x2+6x160,1000,此时原方程有两个

28、实数根,a4符合题意又,当a4时,原式2故的值为2题乙:(1)过点D作DEAC,交BC的延长线于E,ADBC,四边形ACED是平行四边形,DEAC,DEBD,CEAD,AD2,BCBD3,AC4,BEBC+CE5,DEAC4,BD3,BD2+DE2BE2,BDE90,BDDE,BDAC;(2)过点D作DFBC于F,SDBEBEDFBDDE,DF,SABCBCDF3,ADBC,AODCOB,OA:AC2:5,SAOB:SABC2:5,SAOBSABC【点评】此题考查了根与系数的关系,分式的化简以及梯形的性质,平行四边形的性质与相似三角形的判定与性质等知识此题综合性很强,解题时要注意仔细分析24【

29、分析】(1)连OD,OE,根据圆周角定理得到ADO+190,而CDACBD,CBD1,于是CDA+ADO90;(2)根据切线的性质得到EDEB,OEBD,则ABDOEB,得到tanCDAtanOEB,易证RtCDORtCBE,得到,求得CD,然后在RtCBE中,运用勾股定理可计算出BE的长【解答】(1)证明:连OD,OE,如图,AB为直径,ADB90,即ADO+190,又CDACBD,而CBD1,1CDA,CDA+ADO90,即CDO90,CD是O的切线;(2)解:EB为O的切线,EDEB,OEDB,ABD+DBE90,OEB+DBE90,ABDOEB,CDAOEB而tanCDA,tanOEB

30、,RtCDORtCBE,CD64,在RtCBE中,设BEx,(x+4)2x2+62,解得x即BE的长为【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质六、本大题共2小题,第25题12分,第26题13分,共计25分25【分析】本题需要寻找相似三角形,并利用相似三角形的性质依次推理得出结论【解答】证明:(1)如图1,连接DE,ACmBC,CDAB,当m1,n1时ADBD,ACD45,CDADAB,AEnEC,DEAEECAC,EDC45,DEAC,A45,AEDG,EFBE,AEF+FEDFED+DEG90,AEFDE

31、G,AEFDEG(ASA),EFEG(2)解:EFEG,证明:如图2,作EMAB于点M,ENCD于点N,EMCD,AEMACD,即EMCD,ENAD,CENCAD,ENAD,ACB90,CDAB,ACBADC90,又AA,ACDABC,1,1,又EMAB,ENCD,EMFENG90,EFBE,FEMGEN,EFMEGN,即EFEG;(3)证明:如图2,作EMAB于点M,ENCD于点N,EMCD,AEMACD,即EMCD,ENAD,CENCAD,ENAD,ACB90,CDAB,ACBADC90,又AA,ACDABC,又EMAB,ENCD,EMFENG90,EFBE,FEMGEN,EFMEGN,即

32、EFEG【点评】此题主要考查学生对相似三角形的判定与性质和勾股定理的理解和掌握,解答此题的关键是要懂得找相似三角形,利用相似三角形的性质求解,难度较大26【分析】(1)可设顶点式,将顶点为A(1,5),点B(5,1)代入求出抛物线的解析式;(2)可以过y,x轴分别做A,B的对称点A,B,然后连AD,BC,当这四点在同一直线时,周长最小,求出即可;(3)作B关于x轴对称点B,A关于y轴对称点A,连接AB,与x轴,y轴交于C、D点,此时四边形ABCD周长最小,求出CD的解析式,求出CD与直线yx的交点坐标,得到PQR与直线yx有公共点时x的取值范围,以及公共部分的面积S与x之间的函数关系式【解答】

33、解:(1)抛物线的顶点为A(1,5),设抛物线的解析式为ya(x1)2+5,将点B(5,1)代入,得a(51)2+51,解得a,yx2+x+;(2)可以过y,x轴分别做A,B的对称点A,B,然后连AD,BC,显然A(1,5),B(5,1),连接AB分别交x轴、y轴于点C、D两点,DADA,CBCB,此时四边形ABCD的周长最小,最小值就是AB+AB,而AB6,AB4,AB+AB10,四边形ABCD的最小周长为10;(3)点B关于x轴的对称点B(5,1),点A关于y轴的对称点A(1,5),连接AB,与x轴,y轴交于C,D点,CD的解析式为:yx+4,联立,得:,点P在yx上,点Q是OP的中点,要

34、使等腰直角三角形与直线CD有公共点,则2x4故x的取值范围是:2x4如图:点E(2,2),当EPEQ时,x22x,得:x,当2x时,SPRRQEP2(xx)(xx)(x2)(x2),Sx2+4x4,当x时,S最大当x4时,SEQ2(2x)(2x),S(x4)2,当x时,S最大故S的最大值为:【点评】本题考查的是二次函数的综合题,(1)利用顶点式求出二次函数的解析式,(2)确定四边形的周长,(3)根据对称性求出CD的解析式,然后求出x的取值范围和S与x的函数关系声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/2/21 11:40:49;用户:18366185883;邮箱:18366185883;学号:22597006第27页(共27页)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服