1、2016年山东省滨州市中考数学试卷一、选择题:本大题共12个小题,在每小题给出的的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分1(3分)12等于()A1B1C2D22(3分)如图,ABCD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()AEMBENDBBMNMNCCCNHBPGDDNGAME3(3分)把多项式x2+ax+b分解因式,得(x+1)(x3),则a,b的值分别是()Aa2,b3Ba2,b3Ca2,b3Da2,b34(3分)下列分式中,最简分式是()ABCD5(3
2、分)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A15.5,15.5B15.5,15C15,15.5D15,156(3分)如图,ABC中,D为AB上一点,E为BC上一点,且ACCDBDBE,A50,则CDE的度数为()A50B51C51.5D52.57(3分)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(3,2),(b,m),(c,m),则点E的坐标是()A(2,3)B(2,3)C(3,2)D(3,2)8(3分)对于不等式组下列说法正确的是()A此不等式组无解B此不等式组有7个整数解C此不等式组的负整
3、数解是3,2,1D此不等式组的解集是x29(3分)如图是由4个大小相同的正方体组合而成的几何体,其主视图是()ABCD10(3分)抛物线y2x22x+1与坐标轴的交点个数是()A0B1C2D311(3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180得到抛物线yx2+5x+6,则原抛物线的解析式是()Ay(x)2By(x+)2Cy(x)2Dy(x+)2+12(3分)如图,AB是O的直径,C,D是O上的点,且OCBD,AD分别与BC,OC相交于点E,F,则下列结论:ADBD;AOCAEC;BC平分ABD;AFDF;BD2OF;CEFBED,其中一定成立的是()ABC
4、D二、填空题:本大题共6个小题,每小题4分满分24分13(4分)有5张看上去无差别的卡片,上面分别写着0,1.333随机抽取1张,则取出的数是无理数的概率是 14(4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做 个零件15(4分)如图,矩形ABCD中,AB,BC,点E在对角线BD上,且BE1.8,连接AE并延长交DC于点F,则 16(4分)如图,ABC是等边三角形,AB2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是 17(4分)如图,已知点A、C在反比例函数y的图象上,点B,D在反比例函数y
5、的图象上,ab0,ABCDx轴,AB,CD在x轴的两侧,AB,CD,AB与CD间的距离为6,则ab的值是 18(4分)观察下列式子:13+122;79+182;2527+1262;7981+1802;可猜想第2016个式子为 三、解答题:(本大题共6个小题,满分60分,解答时请写出必要的演推过程)19(8分)先化简,再求值:(),其中a20(9分)某运动员在一场篮球比赛中的技术统计如表所示: 技术 上场时间(分钟) 出手投篮(次) 投中(次) 罚球得分 篮板(个) 助攻(次) 个人总得分 数据 46 66 22 10 118 60 注:表中出手投篮次数和投中次数均不包括罚球根据以上信息,求本场
6、比赛中该运动员投中2分球和3分球各几个21(9分)如图,过正方形ABCD顶点B,C的O与AD相切于点E,与CD相交于点F,连接EF(1)求证:EF平分BFD(2)若tanFBC,DF,求EF的长22(10分)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km设爸爸骑行时间为x(h)(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)
7、请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家23(10分)如图,BD是ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG(1)请判断四边形EBGD的形状,并说明理由;(2)若ABC30,C45,ED2,点H是BD上的一个动点,求HG+HC的最小值24(14分)如图,已知抛物线yx2x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得ACM是等腰三角形?若存在,请求出点M的坐标
8、;若不存在,请说明理由2016年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题给出的的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分1【分析】根据乘方的意义,相反数的意义,可得答案【解答】解:121,故选:B【点评】本题考查了有理数的乘方,1的平方的相反数2【分析】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论【解答】解:A、ABCD,EMBEND(两直线平行,同位角相等);B、ABCD,BMNMNC(两直线平行,内错角相等);C、ABCD,CNHMPN(两直线平行,
9、同位角相等),MPNBPG(对顶角),CNHBPG(等量代换);D、DNG与AME没有关系,无法判定其相等故选:D【点评】本题考查了平行线的性质,解题的关键是结合平行线的性质来对照四个选择本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键3【分析】因式分解的结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a与b的值即可【解答】解:根据题意得:x2+ax+b(x+1)(x3)x22x3,则a2,b3,故选:A【点评】此题考查了因式分解十字相乘法,以及多项式乘以多项式,熟练掌握运算法则是解本题的关键4【分析】利用最简分式的定义判断即可【解答】解:A
10、、原式为最简分式,符合题意;B、原式,不合题意;C、原式,不合题意;D、原式,不合题意,故选:A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式5【分析】根据年龄分布图和平均数、中位数的概念求解【解答】解:根据图中信息可知这些队员年龄的平均数为:15(岁),该足球队共有队员2+6+8+3+2+122(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D【点评】本题考查了确定一组数据的平均数,中位数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两
11、位数的平均数6【分析】根据等腰三角形的性质推出ACDA50,BDCB,BDEBED,根据三角形的外角性质求出B25,由三角形的内角和定理求出BDE,根据平角的定义即可求出选项【解答】解:ACCDBDBE,A50,ACDA50,BDCB,BDEBED,B+DCBCDA50,B25,B+EDB+DEB180,BDEBED(18025)77.5,CDE180CDAEDB1805077.552.5,故选:D【点评】本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键7【分析】由题目中A点坐标特征推导得出平面直角
12、坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了【解答】解:点A坐标为(0,a),点A在该平面直角坐标系的y轴上,点C、D的坐标为(b,m),(c,m),点C、D关于y轴对称,正五边形ABCDE是轴对称图形,该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,点B、E也关于y轴对称,点B的坐标为(3,2),点E的坐标为(3,2)故选:C【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y轴8【分析】分别解两个不等式得到x4和x2.5,利用大于小的小于大的取中间可
13、确定不等式组的解集,再写出不等式组的整数解,然后对各选项进行判断【解答】解:,解得x4,解得x2.5,所以不等式组的解集为2.5x4,所以不等式组的整数解为2,1,0,1,2,3,4故选:B【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解9【分析】根据几何体的三视图,即可解答【解答】解:根据图形可得主视图为:故选:C【点评】本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐
14、;俯、左:宽相等10【分析】对于抛物线解析式,分别令x0与y0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数【解答】解:抛物线y2x22x+1,显然抛物线与y轴有一个交点,令y0,得到2x22x+10,880,抛物线与x轴有一个交点,则抛物线与坐标轴的交点个数是2,故选:C【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点11【分析】先求出绕原点旋转180的抛物线解析式,求出向下平移3个单位长度的解析式即可【解答】解:抛物线的解析式为:yx2+5x+6,设原抛物线上有点(x0,y0),绕原点旋转180后,变为(x0,y
15、0),点(x0,y0)在抛物线yx2+5x+6上,将(x0,y0)代入yx2+5x+6得到新抛物线y0x025x0+6,所以原抛物线的方程为y0x02+5x06(x0)2+,向下平移3个单位长度的解析式为y0(x0)2+3(x0)2故选:A【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键12【分析】由直径所对圆周角是直角,由于AOC是O的圆心角,AEC是O的圆内部的角,由平行线得到OCBDBC,再由圆的性质得到结论判断出OBCDBC;用半径垂直于不是直径的弦,必平分弦;用三角形的中位线得到结论;得不到CEF和BED中对应相等的边,所以不一定全等【
16、解答】解:、AB是O的直径,ADB90,ADBD,假设AOCAEC,AC,ABCC,AABC,OCBDCCBD,ABCDBC,即:C,D是半圆的三等分点,而与“C,D是O上的点”矛盾,AOCAEC,、OCBD,OCBDBC,OCOB,OCBOBC,OBCDBC,BC平分ABD,、AB是O的直径,ADB90,ADBD,OCBD,AFO90,点O为圆心,AFDF,、由有,AFDF,点O为AB中点,OF是ABD的中位线,BD2OF,CEF和BED中,没有相等的边,CEF与BED不全等,故选:D【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质二、
17、填空题:本大题共6个小题,每小题4分满分24分13【分析】让是无理数的数的个数除以数的总数即为所求的概率【解答】解:所有的数有5个,无理数有,共2个,抽到写有无理数的卡片的概率是25故答案为:【点评】考查概率公式的应用;判断出无理数的个数是解决本题的易错点14【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的方程,解方程组即可得出结论【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:故答案为:9【点评】本题考查了分式方程的应用,属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键15【分析】根据勾股定理求出BD,得到DE的长,
18、根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF,计算即可【解答】解:四边形ABCD是矩形,BAD90,又AB,BC,BD3,BE1.8,DE31.81.2,ABCD,即,解得,DF,则CFCDDF,故答案为:【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键16【分析】根据等边三角形的面积公式求出正ABC的面积,根据扇形的面积公式S求出扇形的面积,求差得到答案【解答】解:正ABC的边长为2,ABC的面积为2,扇形ABC的面积为,则图中阴影部分的面积3()23,故答案为:23【点评】本题考查的是等边三角形的性
19、质和扇形的面积计算,掌握扇形的面积公式S是解题的关键17【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,再由点A、B的横坐标结合AB即可求出ab的值【解答】解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,则点A(,y1),点B(,y1),点C(,y2),点D(,y2)AB,CD,2|,|y1|2|y2|y1|+|y2|6,y14,y22AB,ab3故答案为:3【点评】本题考查了两点间的距离、反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是利用两点间的距离公
20、式找出AB18【分析】观察等式两边的数的特点,用n表示其规律,代入n2016即可求解【解答】解:观察发现,第n个等式可以表示为:(3n2)3n+1(3n1)2,当n2016时,(320162)32016+1(320161)2,故答案为:(320162)32016+1(320161)2【点评】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n之间的关系是解题的关键三、解答题:(本大题共6个小题,满分60分,解答时请写出必要的演推过程)19【分析】先括号内通分化简,然后把乘除化为乘法,最后代入计算即可【解答】解:原式(a2)2,a,原式(2)264【点评】本题考查分式的混合运算化简求值,熟
21、练掌握分式的混合运算法则是解题的关键,通分时学会确定最简公分母,能先约分的先约分化简,属于中考常考题型20【分析】设本场比赛中该运动员投中2分球x个,3分球y个,根据投中22次,结合罚球得分总分可列出关于x、y的二元一次方程组,解方程组即可得出结论【解答】解:设本场比赛中该运动员投中2分球x个,3分球y个,依题意得:,解得:答:本场比赛中该运动员投中2分球16个,3分球6个【点评】本题考查了二元一次方程组的应用,解题的关键是根据数量关系列出关于x、y的二元一次方程组本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键21【分析】(1)根据切线的性质得到OEAD,由
22、四边形ABCD的正方形,得到CDAD,推出OECD,根据平行线的性质得到EFDOEF,由等腰三角形的性质得到OEFOFE,根据角平分线的定义即可得到结论;(2)连接PF,由BF是O的直径,得到BPF90,推出四边形BCFP是矩形,根据tanFBC,设CF3x,BC4x,于是得到3x+4x,x,求得ADBC4,推出DFOEAB于是得到DE:AEOF:OB1:1即可得到结论【解答】解:(1)连接OE,C90,BF是O的直径,O与AD相切于点E,OEAD,四边形ABCD的正方形,CDAD,OECD,EFDOEF,OEOF,OEFOFE,OFEEFD,EF平分BFD;(2)连接PF,BF是O的直径,B
23、PF90,四边形BCFP是矩形,PFBC,tanFBC,设CF3x,BC4x,3x+4x,x,ADBC4,点E是切点,OEADDFOEABDE:AEOF:OB1:1DEAD2,EF5【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键22【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案【解答】解;(1)由题意,得y120x (0x2)y240(x1)(1x2);(2)由题意得;(3)由图象可得李玉刚和妈妈乘车和爸爸骑行同时到达老家【点评】本题考查了一次函数
24、图象,利用描点法是画函数图象的关键23【分析】(1)结论四边形EBGD是菱形只要证明BEEDDGGB即可(2)作EMBC于M,DNBC于N,连接EC交BD于点H,此时HG+HC最小,在RTEMC中,求出EM、MC即可解决问题【解答】解:(1)四边形EBGD是菱形理由:EG垂直平分BD,EBED,GBGD,EBDEDB,EBDDBC,EDFGBF,在EFD和GFB中,EFDGFB,EDBG,BEEDDGGB,四边形EBGD是菱形(2)作EMBC于M,DNBC于N,连接EC交BD于点H,此时HG+HC最小,在RtEBM中,EMB90,EBM30,EBED2,EMBE,DEBC,EMBC,DNBC,
25、EMDN,EMDN,MNDE2,在RtDNC中,DNC90,DCN45,NDCNCD45,DNNC,MC3,在RtEMC中,EMC90,EMMC3,EC10HG+HCEH+HCEC,HG+HC的最小值为10【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型24【分析】(1)分别令y0,x0,即可解决问题(2)由图象可知AB只能为平行四边形的边,分E点为抛物线上的普通点和顶点2种情况讨论,即可求出平行四边形的面积(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题【解答】解:(1)
26、令y0得x2x+20,x2+2x80,x4或2,点A坐标(2,0),点B坐标(4,0),令x0,得y2,点C坐标(0,2)(2)由图象AB为平行四边形的边时,ABEF6,对称轴x1,点E的横坐标为7或5,点E坐标(7,)或(5,),此时点F(1,),以A,B,E,F为顶点的平行四边形的面积6当点E在抛物线顶点时,点E(1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积6(3)如图所示,当C为等腰三角形的顶角的顶点时,CM1CA,CM2CA,作M1NOC于N,在RTCM1N中,CN,点M1坐标(1,2+),点M2坐标(1,2)当M3为等腰三角形的顶角的顶点时,直线AC解析式为yx+2,线段AC的垂直平分线为yx与对称轴的交点为M3(11),点M3坐标为(1,1)当点A为等腰三角形的顶角的顶点的三角形不存在综上所述点M坐标为(1,1)或(1,2+)或(1,2)【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/10/23 20:09:39;用户:18366185883;邮箱:18366185883;学号:22597006第20页(共20页)