1、2022年陕西省初中学业水平考试数学试卷注意事项:1本试卷分为第一部分(选择题)和第二部分(非选择题)全卷共8页,考试时间120分钟2领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡上填涂对应的试卷类型信息点(A或B)3请在答题卡上各题的指定区域内作答,否则作答无效4作图时,先用铅笔作图,再用规定签字笔搭黑5考试结束,本试卷和答题卡一并交回第一部分(选择题)一、选择题共8小题,每小题只有一个选项是符合题意的)1. 的相反数是( )A. B. 37C. D. 2. 如图,若,则的大小为( )A. B. C. D. 3. 计算:( )
2、A B. C. D. 4. 在下列条件中,能够判定为矩形的是( )A. B. C. D. 5. 如图,是的高,若,则边的长为( )A. B. C. D. 6. 在同一平面直角坐标系中,直线与相交于点,则关于x,y的方程组的解为( )A B. C. D. 7. 如图,内接于,连接,则( )A. B. C. D. 8. 已知二次函数y=x22x3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3当1x10,1x23时,y1,y2,y3三者之间的大小关系是( )A. B. C. D. 第二部分(非选择题)二、填空题(共5小题)9. 计算:_10. 实数a,b在数轴上对应点的位置如图所示,则a
3、_(填“”“=”或“”)11. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果如图,利用黄金分割法,所做将矩形窗框分为上下两部分,其中E为边的黄金分割点,即已知为2米,则线段的长为_米12. 已知点A(2,m)在一个反比例函数的图象上,点A与点A关于y轴对称若点A在正比例函数的图象上,则这个反比例函数的表达式为_13. 如图,在菱形中,若M、N分别是边上的动点,且,作,垂足分别为E、F,则的值为_三、解答题(共13小题,解答应写出过程)14. 计算:15. 解不等式组:16 化简:17. 如图,已知是一个外角请用尺规作图法,求作射线
4、,使(保留作图痕迹,不写作法)18. 如图,在ABC中,点D在边BC上,CD=AB,DEAB,DCE=A求证:DE=BC19. 如图,的顶点坐标分别为将平移后得到,且点A的对应点是,点B、C的对应点分别是(1)点A、之间的距离是_;(2)请在图中画出20. 有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg现将这五个纸箱随机摆放(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是_;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率21. 小明
5、和小华利用阳光下的影子来测量一建筑物顶部旗杆的高如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AOOD,EFFG已知小明的身高EF为1.8米,求旗杆的高AB22. 如图,是一个“函数求值机”示意图,其中y是x的函数下面表格中,是通过该“函数求值机”得到的几组x与y的对应值输人x02输出y2616根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为_;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值23. 某校为了了解本校学
6、生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A850B1675C40105D36150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在_组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数24. 如图,是的直径,是的切线,、是的弦,且,垂足为E,连接并延长,交于点P(1)求证:;(2)若的半径,求线段的长25. 现要修建一条隧道,其截面为抛物线型,
7、如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系根据设计要求:,该抛物线的顶点P到的距离为(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯已知点A、B到的距离均为,求点A、B的坐标26. 问题提出(1)如图1,是等边的中线,点P在的延长线上,且,则的度数为_问题探究(2)如图2,在中,过点A作,且,过点P作直线,分别交于点O、E,求四边形的面积问题解决(3)如图3,现有一块型板材,为钝角,工人师傅想用这块板材裁出一个型部件,并要求工人师傅在这块板材上的作法如下:以点C为圆心,以长为半径画弧,交于点D,连接;作的垂直平分线l,与于点E;以点A为圆心,以长为半径画弧,交直线l于点P,连接,得请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论学科网(北京)股份有限公司