1、2017年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1(3分)6的倒数是()A16B16C6D62(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A7.8107B7.8108C0.78107D781083(3分)下列运算正确的是()A2x2x2=1Bx6x3=x2C4xx4=4x5D(3xy2)2=6x2y44(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米
2、多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A30x1=40x-25B30x1=40x+25C30x+1=40x-25D30x+1=40x+255(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是() ABCD6(3分)如图,AB是O的直径,直线DA与O相切与点A,DO交O于点C,连接BC,若ABC=21,则ADC的度数为()A46B47C48D497(3分)一个多边形的内角和比其外角和的2倍多180,则该多边形的对角线的条数是()A12B13C14D158(3分)如图,在RtABC中,BCA
3、=90,BAC=30,BC=2,将RtABC绕A点顺时针旋转90得到RtADE,则BC扫过的面积为()A2B(23)C2-32D9(3分)如图,菱形ABCD的边长为6,ABC=120,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A72B273C355D26410(3分)如图,在四边形ABCD中,DCAB,AD=5,CD=3,sinA=sinB=13,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边ADDCCB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,APQ的面积为s,则s
4、关于t的函数图象是()ABCD11(3分)对于实数a,b,定义符号mina,b,其意义为:当ab时,mina,b=b;当ab时,mina,b=a例如:min=2,1=1,若关于x的函数y=min2x1,x+3,则该函数的最大值为()A23B1C43D5312(3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:FDG=18;FG=35;(S四边形CDEF)2=9+25;DF2DG2=725其中正确结论的个数是()A1B2C3D4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13(4分)(12)32
5、cos45+(3.14)0+8= 14(4分)圆锥的底面周长为23,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为 15(4分)直线y=kx+b与双曲线y=6x交于A(3,m),B(n,6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则SADE= 16(4分)二次函数y=ax2+bx+c(a0)图象与x轴的交点A、B的横坐标分别为3,1,与y轴交于点C,下面四个结论:16a4b+c0;若P(5,y1),Q(52,y2)是函数图象上的两点,则y1y2;a=13c;若ABC是等腰三角形,则b=273其中正确的有 (请
6、将结论正确的序号全部填上)17(4分)如图,在矩形ABCD中,BEAC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE= 三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18(6分)先化简,再求值:(a+6aa-3)(a+9a+9a-3),其中a=3319(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表: 学生最喜欢的活动项目的人数统
7、计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a= ,b= ,c= (2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率20(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31(1
8、)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19,求乙楼的高度及甲乙两楼之间的距离(精确到0.01m)(cos310.86,tan310.60,cos190.95,tan190.34,cos400.77,tan400.84)21(9分)已知ABC与DEC是两个大小不同的等腰直角三角形(1)如图所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图所示,连接DB,将线段DB绕D点顺时针旋转90到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说
9、明理由22(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?23(10分)已知AB是O的直径,C是圆上一点,BAC的平分线交O于点D,过D作DEAC交AC的延长线于点E,如图(1)求证:D
10、是O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图,若F是OA中点,FGOA交直线DE于点G,若FG=194,tanBAD=34,求O的半径24(12分)抛物线y=ax2+bx+c过A(2,3),B(4,3),C(6,5)三点(1)求抛物线的表达式;(2)如图,抛物线上一点D在线段AC的上方,DEAB交AC于点E,若满足DEAE=52,求点D的坐标;(3)如图,F为抛物线顶点,过A作直线lAB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与ABF相似,若存在,求P、Q的坐标,并求此时BPQ的面积;若不存在,请说明理由2017年山东
11、省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1(3分)(2017莱芜)6的倒数是()A16B16C6D6【考点】17:倒数【分析】乘积是1的两数互为倒数【解答】解:6的倒数是16故选:A【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键2(3分)(2017莱芜)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为()A7.8107B7.8108C0.78107D78108【考点】1
12、J:科学记数法表示较小的数【分析】绝对值1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【解答】解:数0.00000078用科学记数法表示为7.8107故选A【点评】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3(3分)(2017莱芜)下列运算正确的是()A2x2x2=1Bx6x3=x2C4xx4=4x5D(3xy2)2=6x2y4【考点】4I:整式的混合运算【分析】各项计算得到结果,即可作出判断【解答】
13、解:A、原式=x2,不符合题意;B、原式=x3,不符合题意;C、原式=4x5,符合题意;D、原式=9x2y4,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键4(3分)(2017莱芜)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A30x1=40x-25B30x1=40x+25C30x+1=40x-25D30x+1=40x+25【考点】B6:由实际问题抽象出分式方程【分析】根据电动车每小时比自行车多行驶了25千米,可用x表示出电动车的速度,再由
14、自行车行驶30千米比电动车行驶40千米多用了1小时,可列出方程【解答】解:设自行车的平均速度为x千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程30x1=40x+25,故选B【点评】本题主要考查列方程解应用题,确定出题目中的等量关系是解题的关键5(3分)(2017莱芜)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()ABCD【考点】U2:简单组合体的三视图【分析】根据左视图的定义,画出左视图即可判断【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C故选C【点评
15、】本题考查三视图、熟练掌握三视图的定义,是解决问题的关键6(3分)(2017莱芜)如图,AB是O的直径,直线DA与O相切与点A,DO交O于点C,连接BC,若ABC=21,则ADC的度数为()A46B47C48D49【考点】MC:切线的性质【分析】根据等边对等角可得B=BCO,再根据三角形的一个外角等于与它不相邻的两个内角的和可得AOD=B+BCO,根据切线的性质可得OAD=90,然后根据直角三角形两锐角互余求解即可【解答】解:OB=OC,B=BCO=21,AOD=B+BCO=21+21=42,AB是O的直径,直线DA与O相切与点A,OAD=90,ADC=90AOD=9042=48故选C【点评】
16、本题考查了切线的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键7(3分)(2017莱芜)一个多边形的内角和比其外角和的2倍多180,则该多边形的对角线的条数是()A12B13C14D15【考点】L3:多边形内角与外角;L2:多边形的对角线【分析】多边形的内角和比外角和的2倍多180,而多边形的外角和是360,则内角和是900度,n边形的内角和可以表示成(n2)180,设这个多边形的边数是n,就得到方程,从而求出边数,进而求出对角线的条数【解答】解:根据题意,得(n2)180=3602+180,解得:n=7则这个多边形的边数是7,七边
17、形的对角线条数为7(7-3)2=14,故选C【点评】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解8(3分)(2017莱芜)如图,在RtABC中,BCA=90,BAC=30,BC=2,将RtABC绕A点顺时针旋转90得到RtADE,则BC扫过的面积为()A2B(23)C2-32D【考点】MO:扇形面积的计算;KO:含30度角的直角三角形;R2:旋转的性质【分析】解直角三角形得到AC,AB,根据旋转推出ABC的面积等于ADE的面积,根据扇形和三角形的面积公式即可得到结论【解答】解:在RtABC中,BCA=90,BAC=30,BC=2,AC=2
18、3,AB=4,将RtABC绕点A逆时针旋转90得到RtADE,ABC的面积等于ADE的面积,CAB=DAE,AE=AC=23,AD=AB=4,CAE=DAB=90,阴影部分的面积S=S扇形BAD+SABCS扇形CAESADE=9042360+1222390(23)236012223=故选D【点评】本题考查了三角形、扇形的面积,旋转的旋转,勾股定理等知识点的应用,解此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积9(3分)(2017莱芜)如图,菱形ABCD的边长为6,ABC=120,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A
19、72B273C355D264【考点】PA:轴对称最短路线问题;L8:菱形的性质【分析】如图,连接DP,BD,作DHBC于H当D、P、M共线时,PB+PM=DM的值最小,利用勾股定理求出DM,再利用平行线的性质即可解决问题【解答】解:如图,连接DP,BD,作DHBC于H四边形ABCD是菱形,ACBD,B、D关于AC对称,PB+PM=PD+PM,当D、P、M共线时,PB+PM=DM的值最小,CM=13BC=2,ABC=120,DBC=ABD=60,DBC是等边三角形,BC=6,CM=2,HM=1,DH=33,在RtDMH中,DM=DH2+HM2=(33)2+12=27,CMAD,PMDP=CMAD
20、=26=13,PM=14DM=72故选A【点评】本题考查轴对称最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型10(3分)(2017莱芜)如图,在四边形ABCD中,DCAB,AD=5,CD=3,sinA=sinB=13,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边ADDCCB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,APQ的面积为s,则s关于t的函数图象是()ABCD【考点】E7:动点问题的函数图象【分析】过点Q做QMA
21、B于点M,分点Q在线段AD、DC、CB上三种情况考虑,根据三角形的面积公式找出s关于t的函数关系式,再结合四个选项即可得出结论【解答】解:过点Q做QMAB于点M当点Q在线段AD上时,如图1所示,AP=AQ=t(0t5),sinA=13,QM=13t,s=12APQM=16t2;当点Q在线段CD上时,如图2所示,AP=t(5t8),QM=ADsinA=53,s=12APQM=56t;当点Q在线段CB上时,如图3所示,AP=t(8t2023+3(利用解直角三角形求出AB=2023+3),BQ=5+3+5t=13t,sinB=13,QM=13(13t),s=12APQM=16(t213t),s=16
22、(t213t)的对称轴为直线x=132综上观察函数图象可知B选项中的图象符合题意故选B【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q在线段AD、DC、CB上三种情况找出s关于t的函数关系式是解题的关键11(3分)(2017莱芜)对于实数a,b,定义符号mina,b,其意义为:当ab时,mina,b=b;当ab时,mina,b=a例如:min=2,1=1,若关于x的函数y=min2x1,x+3,则该函数的最大值为()A23B1C43D53【考点】F5:一次函数的性质【分析】根据定义先列不等式:2x1x+3和2x1x+3,确定其y=min2x1,x+3对应的函数,画图象可知其最大值【
23、解答】解:由题意得:&y=2x-1&y=-x+3,解得:&x=43&y=53,当2x1x+3时,x43,当x43时,y=min2x1,x+3=x+3,由图象可知:此时该函数的最大值为53;当2x1x+3时,x43,当x43时,y=min2x1,x+3=2x1,由图象可知:此时该函数的最大值为53;综上所述,y=min2x1,x+3的最大值是当x=43所对应的y的值,如图所示,当x=43时,y=53,故选D【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题12(3分)(2017莱芜)如图,正五边形ABCDE的边长为2,连结AC
24、、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:FDG=18;FG=35;(S四边形CDEF)2=9+25;DF2DG2=725其中正确结论的个数是()A1B2C3D4【考点】MM:正多边形和圆;S9:相似三角形的判定与性质【分析】先根据正五方形ABCDE的性质得:ABC=1803605=108,由等边对等角可得:BAC=ACB=36,再利用角相等求BC=CF=CD,得CDF=CFD=180-722=54,可得FDG=18;证明ABFACB,得ABAC=EGED,代入可得FG的长;如图1,先证明四边形CDEF是平行四边形,根据平行四边形的面积公式可得:(S四边形CDE
25、F)2=EF2DM2=410+254=10+25;如图2,CDEF是菱形,先计算EC=BE=4FG=1+5,由S四边形CDEF=12FDEC=210+254,可得FD2=1025,计算可得结论【解答】解:五方形ABCDE是正五边形,AB=BC,ABC=1803605=108,BAC=ACB=36,ACD=10836=72,同理得:ADE=36,BAE=108,AB=AE,ABE=36,CBF=10836=72,BC=FC,BC=CD,CD=CF,CDF=CFD=180-722=54,FDG=CDECDFADE=1085436=18;所以正确;ABE=ACB=36,BAC=BAF,ABFACB,
26、ABAC=EGED,ABED=ACEG,AB=ED=2,AC=BE=BG+EFFG=2ABFG=4FG,EG=BGFG=2FG,22=(2FG)(4FG),FG=3+52(舍),FG=35;所以正确;如图1,EBC=72,BCD=108,EBC+BCD=180,EFCD,EF=CD=2,四边形CDEF是平行四边形,过D作DMEG于M,DG=DE,EM=MG=12EG=12(EFFG)=12(23+5)=5-12,由勾股定理得:DM=DE2-EM2=22-(5-12)2=10+254,(S四边形CDEF)2=EF2DM2=410+254=10+25;所以不正确;如图2,连接EC,EF=ED,CD
27、EF是菱形,FDEC,EC=BE=4FG=4(35)=1+5,S四边形CDEF=12FDEC=210+254,12FD(1+5)=10+25,FD2=1025,DF2DG2=10254=625,所以不正确;本题正确的有两个,故选B【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握正五边形的性质是解题的关键二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13(4分)(2017莱芜)(12)32cos45+(3.14)0+8=7+2【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角
28、函数值【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果【解答】解:原式=82+1+22=7+2,故答案为:7+2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键14(4分)(2017莱芜)圆锥的底面周长为23,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为23【考点】KV:平面展开最短路径问题;MP:圆锥的计算【分析】连接AA,根据弧长公式可得出圆心角的度数,由勾股定理可得出AA【解答】解:如图,连接AA,底面周长为23,弧长=n2180=23,n=60即AOA=60,A=60,作OBAA于B,
29、在RtOBA中,OA=2,OB=1,AB=3,AA=23故答案是:23【点评】本题考查了圆锥的计算,平面展开路径最短问题,注意“数形结合”数学思想的应用15(4分)(2017莱芜)直线y=kx+b与双曲线y=6x交于A(3,m),B(n,6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则SADE=16【考点】G8:反比例函数与一次函数的交点问题【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的左边,再利用分割法求出三角形的面积即可【解答】解:由题意A(3,2),B(1,6),直线y=kx+b经过点A(3,2),B(1,6),&-3k+b=2&k+b=-6
30、,解得&k=-2&b=-4,y=2x4,向上平移8个单位得到直线y=2x+4,由&y=-6x&y=-2x+4,解得&x=3&y=-2和&x=-1&y=6,不妨设D(3,2),E(1,6),SADE=68124212641284=16,故答案为16【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积16(4分)(2017莱芜)二次函数y=ax2+bx+c(a0)图象与x轴的交点A、B的横坐标分别为3,1,与y轴交于点C,下面四个结论:16a4b+c0;若P(5,y1),Q(52,y2)是函数图象上的两点,则y1y2;a=13c;若ABC是等
31、腰三角形,则b=273其中正确的有(请将结论正确的序号全部填上)【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点;KH:等腰三角形的性质【分析】根据抛物线开口方向和与x轴的两交点可知:当x=4时,y0,即16a4b+c0;根据图象与x轴的交点A、B的横坐标分别为3,1确定对称轴是:x=1,可得:(4.5,y3)与Q(52,y2)是对称点,所以y1y2;根据对称轴和x=1时,y=0可得结论;要使ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论【解答】解:a0,抛物线开口向下,图象与x轴的交点A、B的横坐标分别为3,1,当
32、x=4时,y0,即16a4b+c0;故正确;图象与x轴的交点A、B的横坐标分别为3,1,抛物线的对称轴是:x=1,P(5,y1),Q(52,y2),1(5)=4,52(1)=3.5,由对称性得:(4.5,y3)与Q(52,y2)是对称点,则y1y2;故不正确;b2a=1,b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=13c;要使ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,AO=1,BOC为直角三角形,又OC的长即为|c|,c2=169=7,由抛物线与y轴的交点在y轴的正半轴上,c=7,与b=2a、a+b+c=0联立组成解方程
33、组,解得b=273;同理当AB=AC=4时AO=1,AOC为直角三角形,又OC的长即为|c|,c2=161=15,由抛物线与y轴的交点在y轴的正半轴上,c=15与b=2a、a+b+c=0联立组成解方程组,解得b=2153;同理当AC=BC时在AOC中,AC2=1+c2,在BOC中BC2=c2+9,AC=BC,1+c2=c2+9,此方程无实数解经解方程组可知有两个b值满足条件故错误综上所述,正确的结论是故答案是:【点评】本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数y=ax2+bx+c的图象与系数的关系:当a0,抛物线开口向下;抛物线的对称轴为直线x=b2a;抛物线与y轴
34、的交点坐标为(0,c),与x轴的交点为(x1,0)、(x2,0)17(4分)(2017莱芜)如图,在矩形ABCD中,BEAC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=5-12【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LB:矩形的性质【分析】利用互余先判断出ABE=FCB,进而得出ABEFCB,即可得出BF=AE,BE=BC=1,再判断出BAF=AEB,进而得出ABEFBA,即可得出AE=AB2,最后用勾股定理即可得出结论【解答】解:四边形ABCD是矩形,BC=AD=1,BAF=ABC=90,ABE+CBF=90,BEAC,BFC=90,BCF+CBF
35、=90,ABE=FCB,在ABE和FCB中,&EAB=BFC=90&AB=CF&ABE=FCB,ABEFCB,BF=AE,BE=BC=1,BEAC,BAF+ABF=90,ABF+AEB=90,BAF=AEB,BAE=AFB,ABEFBA,ABBF=BEAB,ABAE=1AB,AE=AB2,在RtABE中,BE=1,根据勾股定理得,AB2+AE2=BE2=1,AE+AE2=1,AE0,AE=5-12【点评】此题主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解本题的关键是判断出AE=AB2三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推
36、演步骤)18(6分)(2017莱芜)先化简,再求值:(a+6aa-3)(a+9a+9a-3),其中a=33【考点】6D:分式的化简求值【分析】先将原分式化简成aa+3,再代入a的值,即可求出结论【解答】解:原式=a(a-3)+6aa-3a(a-3)+9a+9a-3,=a2+3aa-3a-3a2+6a+9,=a(a+3)a-3a-3(a+3)2,=aa+3当a=33时,原式=aa+3=3-33-3+3=3-33=13【点评】本题考查了分式的化简求值,将原分式化简成aa+3是解题的关键19(8分)(2017莱芜)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳
37、、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表: 学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a=300,b=60,c=10(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进
38、行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图【分析】(1)根据学生数和相应的百分比,即可得到a的值,根据总人数乘以百分比,即可得到b的值,根据学生数除以总人数,可得百分比,即可得出c的值;(2)根据b的值,即可将条形统计图补充完整;(3)根据最喜欢绑腿跑的百分比乘以该校学生数,即可得到结果;(4)根据树状图或列表的结果中,选到“C”和“E”的占2种,即可得出恰好选到学生喜欢程度最高的两项的概率【解答】解:(1)由题可得,a=4515%=300,b=30020%=60,c=30300100
39、=10,故答案为:300,60,10;(2)如图:(3)300020%=600(名);(4)树状图为:共20种情况,其中选到“C”和“E”的有2种,恰好选到“C”和“E”的概率是220=110【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图的应用,熟练掌握运算法则是解本题的关键20(9分)(2017莱芜)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40,爬到甲楼楼顶F处测得乙楼楼
40、顶G处的仰角为19,求乙楼的高度及甲乙两楼之间的距离(精确到0.01m)(cos310.86,tan310.60,cos190.95,tan190.34,cos400.77,tan400.84)【考点】TA:解直角三角形的应用仰角俯角问题【分析】(1)在直角三角形ABE中,利用锐角三角函数定义求出AE与BE的长即可;(2)过点F作FMGD,交GD于M,在直角三角形GMF中,利用锐角三角函数定义表示出GM与GD,设甲乙两楼之间的距离为xm,根据题意列出方程,求出方程的解即可得到结果【解答】解:(1)在RtABE中,BE=ABtan31=31tan3118.60,AE=ABcos31=31cos3
41、136.05,则甲楼的高度为18.60m,彩旗的长度为36.05m;(2)过点F作FMGD,交GD于M,在RtGMF中,GM=FMtan19,在RtGDC中,DG=CDtan40,设甲乙两楼之间的距离为xm,FM=CD=x,根据题意得:xtan40xtan19=18.60,解得:x=37.20,则乙楼的高度为31.25m,甲乙两楼之间的距离为37.20m【点评】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键21(9分)(2017莱芜)已知ABC与DEC是两个大小不同的等腰直角三角形(1)如图所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图所示,连接DB,将线段DB绕D点顺时针旋转90到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形【分析】(1)根据等腰直角三角形的性质、全等三角形的判定定理证明RtBCDRtACE,根据全等三角形的性质解答;(2)证明EBDADF,根据全等三角形的性质证明即可【解答】解:(1)AE=DB,AEDB,证明:ABC与DEC是等腰直角三角形,AC=BC,EC=DC,