1、数学A卷(共100分)第卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.2绝对值是( )A. 2B. 1C. 2D. 2.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A. B. C. D. 3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A. B. C. D. 4.在平面直角坐标系中,将
2、点向下平移2个单位长度得到的点的坐标是( )A. B. C. D. 5.下列计算正确的是( )A. B. C. D. 6.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人7.如图,在中,按以下步骤作图:分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;作直线交于点,连接若,则的长为( )A. 2B. 3C. 4D. 68.已知是分式方程的解,那么实数的值
3、为( )A 3B. 4C. 5D. 69.如图,直线,直线和被,所截,则的长为( )A. 2B. 3C. 4D. 10.关于二次函数,下列说法正确的是( )A. 图象的对称轴在轴的右侧B. 图象与轴的交点坐标为C. 图象与轴的交点坐标为和D. 的最小值为9第卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:_.12.一次函数的值随值的增大而增大,则常数的取值范围为_13.如图,是上的三个点,则的度数为_14.九章算术是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程七中记载:“今有牛五、羊二,直金十两牛二
4、、羊五,直金八两牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两2头牛、5只羊共值金8两每头牛、每只羊各值金多少两?设1头牛值金两,1只羊值金两,则可列方程组为_三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(2)解不等式组:16.先化简,再求值:,其中17.2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会目前,运动会相关准备工作正在有序进行,比赛项目已经确定某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图根据以上信息,解答下列问题:
5、(1)这次被调查的同学共有_人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为_;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率18.成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地如图,为测量电视塔观景台处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶处测得塔处的仰角为45,塔底部处的俯角为22已知建筑物的高约为61米,请计算观景台的高的值(结果精确到1米;参考数据:,)19.在平面直角坐标系中,反比例函数()的图象经过点,过点的直线与轴、轴分别交于,两点(1)求反比例函数的表达
6、式;(2)若面积为的面积的2倍,求此直线的函数表达式20.如图,在的边上取一点,以为圆心,为半径画O,O与边相切于点,连接交O于点,连接,并延长交线段于点(1)求证:是O的切线;(2)若,求O的半径;(3)若是的中点,试探究与的数量关系并说明理由B卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21.已知,则代数式的值为_22.关的一元二次方程有实数根,则实数的取值范围是_23.如图,六边形是正六边形,曲线叫做“正六边形的渐开线”,,,的圆心依次按,循环,且每段弧所对的圆心角均为正六边形的一个外角当时,曲线的长度是_24.在平面直角坐标系中,已知直线()与双
7、曲线交于,两点(点在第一象限),直线()与双曲线交于,两点当这两条直线互相垂直,且四边形的周长为时,点的坐标为_25.如图,在矩形中,分别为,边中点动点从点出发沿向点运动,同时,动点从点出发沿向点运动,连接,过点作于点,连接若点的速度是点的速度的2倍,在点从点运动至点的过程中,线段长度的最大值为_,线段长度的最小值为_二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售调查发现,线下的月销量(单位:件)与线下
8、售价(单位:元/件,)满足一次函数的关系,部分数据如下表:(1)求与的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件试问:当为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润27.在矩形的边上取一点,将沿翻折,使点恰好落在边上点处(1)如图1,若,求的度数;(2)如图2,当,且时,求长;(3)如图3,延长,与的角平分线交于点,交于点,当时,求出的值28.在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点(1)求抛物线的函数表达式(2)如图1,点为第四象限抛物线上一点,连接,交于点,连接,记的面积为,的面积为,求的最大值;(3)如图2,连接,过点作直线,点,分别为直线和抛物线上的点试探究:在第一象限是否存在这样的点,使若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。登录组卷网可对本试卷进行单题组卷、细目表分析、布置作业、举一反三等操作。试卷地址:在组卷网浏览本卷组卷网是学科网旗下的在线题库平台,覆盖小初高全学段全学科、超过900万精品解析试题。关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。 学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。钱老师QQ:537008204曹老师QQ:713000635