收藏 分销(赏)

七年级下册数学期末压轴题测试卷(二).doc

上传人:快乐****生活 文档编号:4917114 上传时间:2024-10-20 格式:DOC 页数:41 大小:1.77MB
下载 相关 举报
七年级下册数学期末压轴题测试卷(二).doc_第1页
第1页 / 共41页
七年级下册数学期末压轴题测试卷(二).doc_第2页
第2页 / 共41页
七年级下册数学期末压轴题测试卷(二).doc_第3页
第3页 / 共41页
七年级下册数学期末压轴题测试卷(二).doc_第4页
第4页 / 共41页
七年级下册数学期末压轴题测试卷(二).doc_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、一、解答题1在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标; (2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示BCD的面积),求点、的坐标; (3)在(2)的条件下,在轴上是否存在一点,使表示PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.2已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3)如图4中,平分,平分,且,则

2、的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数3已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系4如图,已知直线射线CD,P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP作,交直线AB于点F,CG平分(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,

3、求出的度数;若不存在,请说明理由5点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)6已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如

4、图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数7下列等式:,将以上三个等式两边分别相加得:(1)观察发现:_ (2)初步应用:利用(1)的结论,解决以下问题“把拆成两个分子为1的正的真分数之差,即 ;把拆成两个分子为1的正的真分数之和,即 ;( 3 )定义“”是一种新的运算,若,求的值8我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发

5、,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等(1)2020属于 类(填A,B或C);(2)从A类数中任取两个数,则它们的和属于 类(填A,B或C); 从A、B类数中任取一数,则它们的和属于 类(填A,B或C); 从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取

6、出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号)属于C类;属于A类;,属于同一类9阅读下面文字:对于可以如下计算:原式上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)(2)10阅读型综合题对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对若实数 都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对(1)若,则 , ;(2)已知,若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由11

7、阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若bacb,我们称这个多位数为等差数例如:357分成了三个数3,5,7,并且满足:5375;413223分成三个数41,32,23,并且满足:32412332;所以:357和413223都是等差数(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T12如果有

8、一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences)这个常数叫做等比数列的公比,通常用字母q表示(q0)(1)观察一个等比列数1,它的公比q ;如果an(n为正整数)表示这个等比数列的第n项,那么a18 ,an ;(2)如果欲求1+2+4+8+16+230的值,可以按照如下步骤进行:令S1+2+4+8+16+230等式两边同时乘以2,得2S2+4+8+16+32+231由 式,得2SS2311即(21)S2311所以 请根据以上的解答过程,求3+32+33+323的值;(3)用由特殊到一般的方法探索

9、:若数列a1,a2,a3,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q1,请用含a1,q,n的代数式表示a1+a2+a3+an13如图,已知点,点,且,满足关系式(1)求点、的坐标;(2)如图1,点是线段上的动点,轴于点,轴于点,轴于点,连接、试探究,之间的数量关系;(3)如图2,线段以每秒2个单位长度的速度向左水平移动到线段若线段交轴于点,当三角形和三角形的面积相等时,求移动时间和点的坐标14已知:ABCD,截线MN分别交AB、CD于点M、N(1)如图,点B在线段MN上,设EBM,DNM,且满足+(60)20,求BEM的度数;(2)如图,

10、在(1)的条件下,射线DF平分CDE,且交线段BE的延长线于点F;请写出DEF与CDF之间的数量关系,并说明理由;(3)如图,当点P在射线NT上运动时,DCP与BMT的平分线交于点Q,则Q与CPM的比值为 (直接写出答案)15如图,在平面直角坐标系中,同时将点A(1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D连接AC,BD(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;(2)在坐标轴上是否存在点P,连接PA、PC使SPACS四边形ABCD?若存在,求点P坐标;若不存在,请说明理由16某超市投入31500元购进A、B两种饮料共

11、800箱,饮料的成本与销售价如下表:(单位:元/箱)类别成本价销售价A4264B3652(1)该超市购进A、B两种饮料各多少箱?(2)全部售完800箱饮料共盈利多少元?(3)若超市计划盈利16200元,且A类饮料售价不变,则B类饮料销售价至少应定为每箱多少元?17如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接.(1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系.

12、18如图1,在平面直角坐标系中,点O是坐标原点,边长为2的正方形ABCD(点D与点O重合)和边长为4的正方形EFGH的边CO和GH都在x轴上,且点H坐标为(7,0)正方形ABCD以3个单位长度/秒的速度沿着x轴向右运动,记正方形ABCD和正方形EFGH重叠部分的面积为S,假设运动时间为t秒,且t4(1)点F的坐标为 ;(2)如图2,正方形ABCD向右运动的同时,动点P在线段FE上,以1个单位长度/秒的速度从F到E运动连接AP,AE求t为何值时,AP所在直线垂直于x轴;求t为何值时,SSAPE19(1)阅读下列材料并填空:对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得

13、的一次方程组的解 ,用数表可表示为用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= (2)仿照(1)中数表的书写格式写出解方程组的过程20已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并

14、求出最少租车费21每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案22某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,

15、其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案23李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下

16、问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).24阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因为解得因为t为整数,所以t=0或-1所以该方程的正整数解为和

17、(1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案25某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元(1)小丽计划在一年中花费80元在该中心的门票上,

18、如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?26若关于x的方程ax+b0(a0)的解与关于y的方程cy+d0(c0)的解满足1xy1,则称方程ax+b0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)若关于x的方程3x3+4(x1)0

19、与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值27中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?28某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选

20、择,每辆车运载能力和运费如表表示(假设每辆车均满载)车型甲乙丙汽车运载量(公斤/辆)600800900汽车运费(元/辆)500600700(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?29如图,在平面直角坐标系中,,CD/x轴,CD=AB(1)求点D的坐标:(2)四边形OCDB的面积四边形OCDB;(3)在y轴上是否存在点P,使PAB=四边形OCDB;若存在,求出点P的坐标,若不存在,请说明理由.30阅读以下内容:已知有理数

21、m,n满足m+n3,且求k的值三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用73消去未知数x,也可以用2+5消去未知数y求a和b的值【参考答案】*试卷处理标记,请不要删除一、解答题1(1);(2);(3)存在点,其坐标为或.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据SBCD=7(SBCD建立方程求解,即可);(3)设出点P的坐标,表示出PC用,建立方

22、程求解即可【详解】(1)B(3,0)平移后的对应点,设,即线段向左平移5个单位,再向上平移4个单位得到线段点平移后的对应点;(2)点C在轴上,点D在第二象限,线段向左平移3个单位,再向上平移个单位,连接,;(3)存在设点,存在点,其坐标为或.【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.2(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;

23、(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,F

24、NDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键3(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结M

25、F,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,

26、同旁内角互补的性质4(1)40;(2)65;(3)存在,56或20【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=25,再根据PQCE,即可得出CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=4x-3x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)CEB=100,ABCD,ECQ=80,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCE=ECQ=40;(2)ABCDQCG=EGC,QCG+ECG=E

27、CQ=80,EGC+ECG=80,又EGC-ECG=30,EGC=55,ECG=25,ECG=GCF=25,PCF=PCQ=(80-50)=15,PQCE,CPQ=ECP=65;(3)设EGC=4x,EFC=3x,则GCF=FCD=4x-3x=x,当点G、F在点E的右侧时,则ECG=x,PCF=PCD=x,ECD=80,x+x+x+x=80,解得x=16,CPQ=ECP=x+x+x=56;当点G、F在点E的左侧时,则ECG=GCF=x,CGF=180-4x,GCQ=80+x,180-4x=80+x,解得x=20,FCQ=ECF+ECQ=40+80=120,PCQFCQ60,CPQ=ECP=80

28、-60=20【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等5(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,AB

29、ET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了

30、平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型6(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENM

31、EHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,

32、NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键7(1);(2);( 3 )【分析】(1)利用材料中的“拆项法”解答即可;(2)先变形为,再利用(1)中的规律解题;先变形为,再逆用分数的加法法则即可分解;(3)按照定义“”法则表示出,再利用(1)中的规律解题即可【详解】解:(1)观察发现:,;故答案是:;.(2)初步应用:=;故答案是:;.( 3 )由定义可知:=.故的值为【点睛】考查了有理数运算中的规律型问

33、题:数字的变化规律,有理数的混合运算本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题8(1)A;(2)B;C;B;(3)【分析】(1)计算,结合计算结果即可进行判断;(2)从A类数中任取两个数进行计算,即可求解;从A、B两类数中任取两个数进行计算,即可求解;根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断【详解】解:(1)根据题意,2020被3除余数为1,属于A类;故答案为:A(2)从A类数中任取两个数,如:(1+4)3=

34、12,(4+7)3=32,两个A类数的和被3除余数为2,则它们的和属于B类;从A、B类数中任取一数,与同理,如:(1+2)3=1,(1+5)3=2,(4+5)3=3,从A、B类数中任取一数,则它们的和属于C类;从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则,余数为2,属于B类;故答案为:B;C;B(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m1+n2=m+2n,最后的结果属于C类,m+2n能被3整除,即m+2n属于C类,正确;若m=1,n=1,则|mn|=0,不属于B类,错误;观察可发现若m+2n属于C类,m,n必

35、须是同一类,正确;综上,正确故答案为:【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答9(1)(2)【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)(2)原式【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.10(1)5,3;(2)有正格数对,正格数对为【分析】(1)根据定义,直接代入求解即可;(2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可【详解】解:(1)5,3故答案为:5,3;(2)有正格数对将代入,得出,解得,则,为正整数且

36、为整数,正格数对为:【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键11(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M,根据等差数的定义可知,进而得出即可(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解【详解】解:(1) ,148不是等差数, ,514335是等差数;(2)设这个三位数是M, , , ,这个等差数是3的倍数;(3

37、)由(2)知 ,T是24的倍数, 是8的倍数,2c是偶数,只有当35a也是偶数时才有可能是8的倍数,或4或6或8,当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意;当时,此时若,则,若,则,(144、152是8的倍数),当时,此时若,则,若,则,(216、244是8的倍数),当时,此时若,则,若,则,若,则,(280,288,296是8的倍数),若a是偶数,则c也是偶数时b才有意义,和是c是奇数均不符合题意,当时, ,当时,当时,当时,当时,综上,T为432或456或840或864或888【点睛】本题考查新定义下的实数运算、有理

38、数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键12(1) , , ;(2);(3)【分析】(1)1即可求出q,根据已知数的特点求出a18和an即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可【详解】解:(1)1,a181()17,an1()n1,故答案为:,; (2)设S3+32+33+323,则3S32+33+323+324,2S3243,S(3)ana1qn1,a1+a2+a3+an【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度13(1);(2);(

39、3),点C的坐标为【分析】(1)由题意易得,然后可求a、b的值,进而问题可求解;(2)由(1)及题意易得,然后根据建立方程求解即可;(3)分别过点作轴于点P,轴于点Q,由题意易得,然后可得,进而可求t的值,最后根据(2)可得三角形的面积为3,则问题可求解【详解】解:(1),点,点;(2)由(1)可得点,点,轴于点,轴于点,轴于点,且,化简得;(3)分别过点作轴于点P,轴于点Q,如图所示:线段以每秒2个单位长度的速度向左水平移动到线段,时间为,三角形和三角形的面积相等,解得:,由(2)可得三角形的面积为,三角形的面积为3,即,【点睛】本题主要考查图形与坐标、算术平方根与偶次幂的非负性及等积法,熟

40、练掌握图形与坐标、算术平方根与偶次幂的非负性及等积法是解题的关键14(1)30;(2)DEF+2CDF150,理由见解析;(3)【分析】(1)由非负性可求,的值,由平行线的性质和外角性质可求解;(2)过点E作直线EHAB,由角平分线的性质和平行线的性质可求DEF180302x1502x,由角的数量可求解;(3)由平行线的性质和外角性质可求PMB2Q+PCD,CPM2Q,即可求解【详解】解:(1)+(60)20,30,60,ABCD,AMNMND60,AMNB+BEM60,BEM603030;(2)DEF+2CDF150理由如下:过点E作直线EHAB,DF平分CDE,设CDFEDFx;EHAB,DEHEDC2x,DEF180302x1502x;DEF1502CDF,即DEF+2CDF150;(3)如图3,设MQ与CD交于点E,MQ平分BMT,QC平分DCP,BMT2PMQ,DCP2DCQ,ABCD,BMEMEC,BMPPND,MECQ+DCQ,2MEC2Q+2DCQ,PMB2Q

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服