资源描述
湖北省黄冈中学八年级上册期末数学试卷含答案
一、选择题
1、下列是我们一生活中常见的安全标识,其中不是轴对称图形的是( )
A. B. C. D.
2、某红外线遥控器发出的红外线波长为,用科学记数法表示这个数是( )
A. B. C. D.
3、下列计算中正确的是( )
A.a5+a5=a10 B.(-a3)2=-a6 C.a3·a2=a6 D.a7÷a=a6
4、要使式子在实数范围内有意义,则x的取值范围是( )
A.x<2 B.x≥2 C.x≤2 D.x≠2
5、下列各式从左到右的变形中,属于分解因式的是( )
A.4x2﹣4x=4x(x﹣1) B.a(a+2)=a2+2a
C.m2+m+3=m(m+1)+3 D.a2+6a+3=(a+3)2﹣6
6、下列各式从左到右变形不正确的是( )
A. B.
C. D.
7、如图,AB=DE,∠B=∠DEF,添加下列一个条件后,仍然无法确定△ABC≌△DEF的是( )
A.BE=CF B.∠A=∠D C.∠ACB=∠F D.AC=DF
8、已知关于x的分式方程的解为非负数,则满足条件的所有正整数m的个数是( )
A.3 B.4 C.5 D.6
9、如图,已知∠ACB=50°,∠CAD=65°,则∠ADB的度数是( )
A.105° B.65° C.115° D.125°
二、填空题
10、如图,两个正方形的边长分别为a、b,若,,则阴影部分的面积是( )
A.40 B. C.20 D.23
11、若分式的值为0,则x的值为____________.
12、在平面直角坐标系中,作点A(4,-3)关于x轴的对称点,再向右平移2个单位长度得到点,则点的坐标是__________.
13、若,,则(n为非负整数)的值为__________.
14、计算:(﹣0.25)2021×42022=_____.
15、如图所示,在边长为4的正方形中,、分别为、的中点,为对角线上的一个动点,则的最小值的是_________.
16、已知是完全平方式,则的值为______.
17、已知x满足(x﹣2020)2+(2022﹣x)2=10,则(x﹣2021)2的值是____.
18、如图,,cm,cm,点P在线段AC上,以每秒2cm的速度从点A出发向C运动,到点C停止运动,点Q在射线AM上运动,且,当点P的运动时间为_________秒时,△ABC才能和△PQA全等.
三、解答题
19、因式分解:
(1)
(2)
20、解分式方程
(1)
(2)
21、如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O,
(1)求证:Rt△ABC≌Rt△DEF;
(2)若∠A=51°,求∠BOF的度数.
22、如图1,在中,P是与的平分线BP和CP的交点,通过分析发现,理由如下:
∵BP和CP分别是和的角平分线,
∴,.
∴.
又∵在中,,
∴.
∴.
(1)①如图2中,H是外角与外角的平分线BH和CH的交点,若,则________.
②若,则________(用含n的式子表示).请说明理由.
(2)如图3中,在中,P是与的平分线BP和CP的交点,过点P作,交AC于点D.外角的平分线CE与BP的延长线交于点E,则根据探究1的结论,下列角中与相等的角是________;(填选项)
A. B. C.
23、国泰公司和振华公司的全体员工踊跃参与“携手防疫,共渡难关”捐款活动,国泰公司共捐款100000元,振华公司共捐款140000元.下面是国泰、振华两公司员工的一段对话:
(1)国泰、振华两公司各有多少人?
(2)现国泰、振华两公司共同使用这笔捐款购买A,B两种防疫物资,A种防疫物资每箱12000元,B种防疫物资每箱10000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来.(注:A,B两种防疫物资均需购买,并按整箱配送)
24、完全平方公式:适当的变形,可以解决很多的数学问题.
例如:若,求的值.
解:因为
所以
所以
得.
根据上面的解题思路与方法,解决下列问题:
(1)若,求的值;
(2)①若,则 ;
②若则 ;
(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.
25、以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、.
(1)试判断、的数量关系,并说明理由;
(2)延长交于点试求的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
一、选择题
1、B
【解析】B
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【详解】解:A、B、D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
故选:C.
【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、B
【解析】B
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】解:=9.4×10-7m,
故选:B.
【点睛】本题主要考查科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.
3、D
【解析】D
【分析】根据合并同类项、同底数幂除法、同底数幂乘法、幂的乘方,分别进行判断,即可得到答案.
【详解】A. a5+a5=2a5,故A错误;
B. (-a3)2=a6,故B错误;
C. a3·a2=a5,故C错误;
D. a7÷a=a6,故D正确.
故选:D.
【点睛】本题主要考查了整式的运算,熟练掌握合并同类项、同底数幂除法、同底数幂乘法、幂的乘方运算法则,是解题的关键.
4、A
【解析】A
【分析】根据二次根式和分式有意义的条件,即可求解.
【详解】解:由题意得2﹣x≥0且2﹣x≠0,
解得x<2,
故选:A.
【点睛】本题考查的是分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键.
5、A
【解析】A
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的概念判断即可.
【详解】解:A选项,符合因式分解的概念,符合题意;
B选项,属于整式乘法,不符合题意;
C选项,等号的右边不是几个整式的积的形式,不符合题意;
D选项,等号的右边不是几个整式的积的形式,不符合题意;
故选:A.
【点睛】本题考查了因式分解的定义和因式分解的方法,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
6、B
【解析】B
【分析】根据分式的基本性质即可求解.
【详解】解:A. ,该选项变形正确,不符合题意;
B. ,该选项变形错误,符合题意;
C. ,该选项变形正确,不符合题意;
D. ,该选项变形正确,不符合题意;
故选:B.
【点睛】此题主要考查了分式的基本性质,熟练掌握分式的分子分母同时加上(或减去)同一个整式,分式的值不变;分式的分子分母同时乘以(或除以)同一个不等于0的整式,分式的值不变是解题的关键.
7、D
【解析】D
【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.
【详解】∵AB=DE,∠B=∠DEF,
∴添加BE=CF,可得BC=EF,利用SAS可得△ABC≌△DEF;
∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;
∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;
而添加AC=DF,利用SSA不能得到△ABC≌△DEF;
故选:D.
【点睛】本题考查了全等三角形的判定,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
8、B
【解析】B
【分析】方程两边同乘最简公分母将分式方程化为整式方程解得x=;再根据分式方程的解为非负数,列出不等式组,解得m≤5且m≠3,即可求出满足条件的所有正整数m.
【详解】解:由2﹣,
得2(x﹣1)+m=3,
解得x=,
∵分式方程的解为非负数,
∴≥0,
∵x﹣1≠0,
即≠1,
∴,
解得m≤5且m≠3,
∴满足条件的所有正整数m为1,2,4,5,共4个.
故选:B.
【点睛】此题考查了分式方程的解和不等式组的解,解题的关键是分式方程化成整式方程,根据条件列出不等式组求解.
9、C
【解析】C
【分析】根据三角形外角等于和它不相邻的两个内角的和求解即可.
【详解】解:∵∠ACB=50°,∠CAD=65°.
∴.
故选:C
【点睛】本题考查三角形外角性质,解题的关键是理解:三角形的外角等于和它不相邻的两个内角的和.
二、填空题
10、C
【解析】C
【分析】根据阴影部分面积等于2个正方形面积减去2个空白部分的三角形面积,进而根据完全平方公式的变形求解即可
【详解】解:阴影部分面积等于
∵,,
∴阴影部分面积等于
故答案为:C
【点睛】本题考查了完全平方公式变形求图形面积,掌握完全平方公式是解题的关键.
11、
【分析】根据分式的值为零的条件:分母不为零,分子为零,即可求出x的值.
【详解】解:根据分式的值为零的条件可得:
,
可得,
故答案为:.
【点睛】本题考查了分式的值为零的条件,熟知当分式的分母不为零,分子为零时,分式的值为零是解答本题的关键.
12、A
【解析】
【分析】根据点关于x轴对称的坐标规律“横坐标不变,纵坐标互为相反数”得到,再根据点平移坐标规律“右加左减,上加下减”得到即可.
【详解】解:点A(4,-3)关于x轴的对称点的坐标为(4,3),再将向右平移2个单位长度得到点的坐标为(6,3),
故答案为:(6,3).
【点睛】本题考查坐标与图形变换-轴对称和平移,熟练掌握点关于轴对称和平移的坐标变换规律是解答的关键.
13、-1
【分析】将x变形,得到,将ab=1代入得到x=1,再代入中计算即可.
【详解】解:
=1,
∴,
故答案为:-1.
【点睛】本题考查了分式的加减运算,有理数的乘方,解题的关键是化简分式加法,求出x值.
14、﹣4
【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.
【详解】解:
.
故答案为:.
【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.
15、【分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,根据勾股定理计算即可.
【详解】解:如图,连接CP,
由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP
【解析】
【分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,根据勾股定理计算即可.
【详解】解:如图,连接CP,
由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP(SAS),
∴AP=CP,
∴AP+PE=CP+PE,
∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,
∵四边形ABCD是正方形,
∴AD=CD=AB=4,∠ADC=90°,
∵E是AD的中点,
∴ED=2,
由勾股定理得:CE=,
故答案为:.
【点睛】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.
16、【分析】根据完全平方式的特点“两数的平方和加(或减)这两个数的积的2倍”即可求出m的值.
【详解】解:∵是完全平方式,
∴-m=±2×2×3=±12,
∴m=±11、
故答案为:
【点睛】本题考查
【解析】
【分析】根据完全平方式的特点“两数的平方和加(或减)这两个数的积的2倍”即可求出m的值.
【详解】解:∵是完全平方式,
∴-m=±2×2×3=±12,
∴m=±11、
故答案为:
【点睛】本题考查完全平方式的定义,熟知完全平方式的特点是解题关键,注意本题有两个答案,不要漏解.
17、4
【分析】根据题意原式可化为[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=10,再应用完全平方公式可化为(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)
【解析】4
【分析】根据题意原式可化为[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=10,再应用完全平方公式可化为(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=10,应用整体思想合并同类项,即可得出答案.
【详解】解:∵(x﹣2020)2+(x﹣2022)2=10
∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=10,
∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=10,
∴2(x﹣2021)2+2=10,
∴(x﹣2021)2=3、
故答案为:3、
【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2,熟练掌握完全平方公式的结构特征是解题的关键.
18、2或4##4或2
【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可.
【详解】解:设点P的运动时间为t秒,
∵,,
∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL),
【解析】2或4##4或2
【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可.
【详解】解:设点P的运动时间为t秒,
∵,,
∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL),
∴t=4÷2=2秒;
当AP=AC=8cm,时,Rt△PQA≌Rt△ABC(HL),
∴t=8÷2=4秒,
综上,当点P的运动时间为2或4秒时,△ABC才能和△PQA全等.
故答案为:2或3、
【点睛】本题考查全等三角形的判定,熟练掌握证明直角三角形全等的HL定理,利用分类讨论思想是解答的关键.
三、解答题
19、(1)
(2)
【分析】(1)先题公因式,再利用平方差公式因式分解即可;
(2)先利用多项式乘以多项式去括号,然后合并同类项,再利用完全平方公式因式分解即可.
(1)
原式
;
(2)
原式
.
【解析】(1)
(2)
【分析】(1)先题公因式,再利用平方差公式因式分解即可;
(2)先利用多项式乘以多项式去括号,然后合并同类项,再利用完全平方公式因式分解即可.
(1)
原式
;
(2)
原式
.
【点睛】本题考查了因式分解,涉及多项式的乘法运算,熟练掌握公式法和提公因式法是解题的关键.
20、(1);(2)
【分析】(1)分式方程两边同乘以x(x+2),去分母将分式方程转化为整式方程求解,结果要检验;
(2)分式方程两边同乘以(x-2)(x+2),去分母将分式方程转化为整式方程求解,结果
【解析】(1);(2)
【分析】(1)分式方程两边同乘以x(x+2),去分母将分式方程转化为整式方程求解,结果要检验;
(2)分式方程两边同乘以(x-2)(x+2),去分母将分式方程转化为整式方程求解,结果要检验.
【详解】解:(1)去分母得:2x+4=3x,
解得:x=4,
经检验x=4是分式方程的解;
(2)去分母得:x(x+2)-1=(x+2)(x-2),
解得:,
经检验是分式方程的解.
【点睛】本题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
21、(1)见解析;(2)78°
【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC≌Rt△DEF;
(2)根据直角三角形的两锐角互余得∠ABC=39°,根据
【解析】(1)见解析;(2)78°
【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC≌Rt△DEF;
(2)根据直角三角形的两锐角互余得∠ABC=39°,根据全等三角形的性质得∠ABC=∠DEF=39°,由三角形外角的性质即可求解.
【详解】(1)证明:∵AE=DB,
∴AE+EB=DB+EB,即AB=DE.
又∵∠C=∠F=90°,AC=DF,
∴Rt△ABC≌Rt△DEF.
(2)∵∠C=90°,∠A=51°,
∴∠ABC=∠C-∠A=90°-51°=39°.
由(1)知Rt△ABC≌Rt△DEF,
∴∠ABC=∠DEF.
∴∠DEF=39°.
∴∠BOF=∠ABC+∠BEF=39°+39°=78°.
【点睛】本题主要考查直角三角形的两锐角互余,三角形外角的性质,全等三角形的判定与性质,证明三角形全等是解题的关键.
22、(1)①;②,理由见解析
(2)B
【分析】(1)①先根据三角形内角和定理得到的值,再根据角平分线得出的值,最后求得;
②借助题中的结论和角平分线的性质得出、,进而在四边形PBHC中得出结论
(2)
【解析】(1)①;②,理由见解析
(2)B
【分析】(1)①先根据三角形内角和定理得到的值,再根据角平分线得出的值,最后求得;
②借助题中的结论和角平分线的性质得出、,进而在四边形PBHC中得出结论
(2)借助角三角形外角的性质得到,,对等角进行等量代换即可得出结论.
(1)①,,,BH和CH是外角与外角的平分线,故,;②若,则.理由:由图1结论可得,,∵H是外角与外角的平分线BH和CH的交点,P是与的平分线BP和CP的交点,∴,同理可得,∴四边形PBHC中,
(2)由题意可得,,,CP是的平分线,,,又;故答案为:B.
【点睛】本题考查角平分线的性质、三角形外角的性质、三角形内角和定理,解决本题的关键是正确理解题意,熟练应用各性质定理.
23、(1)国泰公司有200人,振华公司有240人.
(2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资.
【分析】(1)设国泰公司有
【解析】(1)国泰公司有200人,振华公司有240人.
(2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资.
【分析】(1)设国泰公司有x人,则振华公司有(x+40)人,根据振华公司的人均捐款数是国泰公司的倍,列出分式方程,解之经检验后即可得出结论;
(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,列出二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案.
(1)
解:设国泰公司有x人,则振华公司有(x+40)人,
依题意,得:,
解得:x=200,
经检验,x=200是原方程的解,且符合题意,
∴x+40=240.
答:国泰公司有200人,振华公司有240人.
(2)
设购买A种防疫物资m箱,购买B种防疫物资n箱,
依题意,得:12000m+10000n=100000+140000,
∴m=20n.
又∵n≥10,且m,n均为正整数,
当n=12时,m=20n=10,
当n=18时,m=20n=5,
当n=24时,m=20n=0,不符合题意,故舍去,
∴或,
∴有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资.
【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程.
24、(1)12;(2)①6;②17;(3)
【分析】(1)根据完全平方公式的变形应用,解决问题;
(2)①两边平方,再将代入计算;
②两边平方,再将代入计算;
(3)由题意可得:,,两边平方从而得到,即
【解析】(1)12;(2)①6;②17;(3)
【分析】(1)根据完全平方公式的变形应用,解决问题;
(2)①两边平方,再将代入计算;
②两边平方,再将代入计算;
(3)由题意可得:,,两边平方从而得到,即可算出结果.
【详解】解:(1);
;
;
又;
,
,
∴.
(2)①,
;
又,
.
②由,
;
又,
.
(3)由题意可得,,;
,;
,
;
图中阴影部分面积为直角三角形面积,
,
.
【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①,②是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案.
25、(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.
【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△A
【解析】(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.
【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;
(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°;
(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°.
【详解】(1)∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,∠BAD=∠EAC=90°,AD=AE,
∵在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),∴BD=CE;
(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,
而在△CDF中,∠BFC=180°-∠ACE-∠CDF,
又∵∠CDF=∠BDA,
∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°;
(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:
∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∵∠BAC+∠CAD=∠EAD+∠CAD,
∴∠BAD=∠CAE,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ACE=∠DBA,
∴∠BFC=∠DAB=90°.
【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.
展开阅读全文