资源描述
六年级人教版上册数学计算题附答案
1.直接写得数。
2.直接写出得数。
3.直接写得数。
0.9-0.86= 2.5×6= 0.35÷0.7= 1--=
×75% = 0.54÷0.6= 280×50= ++=
24÷= 201×4= 200×25%= -÷=
1.6×0.5= += ×= 5.3-7.5+4.7=
4.直接写出得数。
5.直接写得数。
430+280= 540-320= 243+126= 637-268=
23×30= 8×25= 720-90= 390-13=
5.6+2.4= 8-4.9= 2.6×0.3= 0.56÷0.8=
+= += 1-= -=
×1.2= ×= 24÷= ÷=
6.直接写得数。
0.5×0.3= 0.08×6= 0.46+0.34= 1.5÷0.05=
6.8÷10%= 0.3÷6= = 301-199= 0.24×300=
7.直接写得数。
22+68= 7.8-0.08= 8×12.5%= 2.4×5= 0.77+0.33=
8.直接写出得数。
15.1-3.5+6.5= 8×÷8×= 4203÷59≈ 0.42-0.32=
18××= 4÷-÷4= 3.6÷2×5= +0.2=
9.直接写得数。
19+24= 5-1.6= 3.8÷2= 1.5×4=
70-18= 0.25÷0.1= 3.5+0.7= 0.4×0.2=
5÷1000= 1-= ×= ÷=
10.直接写出得数。
11.直接写出得数。
12.直接写出得数。
(1) (2) (3) (4)
(5) (6)5×60%= (7) (8)
13.口算。
2020-998= 68+27= 36×25%= 2.5+4.28×0=
632÷69≈
14.直接写出得数。
415+485= ×22= 0.015÷1.5= 5.5×1.25×8= 100%×1%=
÷= (+)×4= a2+a×a= 2.5×0.4÷2.5×0.4= 2.8×9.9+0.28=
15.直接写出得数。
40%÷40%=
16.怎样简便怎样算。
17.能简算的要简算。
[1-(+)]÷ (+)×11+
1.68×13.5-1.68×3.5 29.4÷2.8×(3.5-2.3)
18.用你喜欢的方法计算。
(1) (2)
(3) (4)
19.计算(能简算的要简算)。
20.用简便方法计算下面各题。
21.脱式计算,能简算的要简算。
22.用喜欢的方法计算。
(1.5-1.5×0.6)÷0.8 73.2÷24+2.5
23.下面各题怎样简便就怎样算。
24.计算下面各题,能简算的要简算
125×8÷125×8 (1.6+1.6+1.6+1.6)×25
3.6×18-0.8×36
25.脱式计算(能简算的要简算)。
(1)270-49-156 (2)(5.9+1.65)÷0.25 (3)3.8×99+3.8
(4)4×0.37×25 (5)÷[×(-)] (6)÷7+×
26.简便计算。
27.脱式计算。
28.计算下面各题,能简算的要简算。
29.能简算的要简算。
30.脱式计算,用自己喜欢的方法计算。
25.39-(5.39+9.1) (+-)÷
×[(-)÷0.5] -×0.75+÷
31.解方程(比例)。
(1) (2)
32.解下列方程。
33.解方程。
(1) (2) (3)
34.解方程。
(1) (2) (3)
35.解方程。
36.解方程。
37.解方程。
x+25%x=24 +x= (x-9.2)=15
38.解方程。
x+x= x÷=18× 40%x+=
39.解方程。
40.解方程。
41.解方程。
42.解方程。
x-20%x=9.6
43.解方程。
44.解方程。
45.解方程。
46.求下图中阴影部分的面积。
47.求下图阴影部分的面积,单位:cm。
48.求阴影部分的面积。(单位:厘米)
49.求阴影部分的周长。(单位:cm)
50.计算下图的面积(单位:dm)。
51.下图长方形的周长是30厘米,求阴影部分的面积。
52.求下面图形中阴影部分的面积。(单位:厘米)
53.如图,求下面图形中阴影部分的面积。
54.求阴影部分的面积及周长各是多少。
55.求下面阴影部分的面积。(单位:厘米)
56.求阴影部分面积。(单位:厘米)
57.求下面阴影部分的面积。(单位:cm)
58.求下图中阴影部分的面积。(单位:cm)
59.求阴影的面积。(单位:厘米)
60.求下图中阴影部分的面积。
【参考答案】
1.;;1.2;;
;16;;15.7
【解析】
2.78;3;1;0;
11;180;0.3;1
【解析】
3.04;15;0.5;0;
1;0.9;14000;;
18;804;50;;
0.8;;;2.5
【解析】
4.;;;;
;5;;
【解析】
5.710;220;369;369;
690;200;630;377;
8;3.1;0.78;0.7;
1;;;;
;;28;
【解析】
6.15;;0.48;0.8;30
68;0.05;;102;72
【解析】
7.90;7.72;1;12;1.1;
;;;;0.5
【解析】
8.1;;70;0.07;
4;;9;0.325
【解析】
9.43;3.4;1.9;6
52;2.5;4.2;0.08
0.005;;;4
【解析】
10.;0.05;;0.16
18;1;4;
【解析】
11.84;7.5;7;3;
80;10;78.5;0.07
【解析】
12.;;9;0
;3;;1
【解析】
13.1022;95;9;2.5;
;;9;6
【解析】
14.900;10;0.01;55;0.01
;5;2a2;0.16;28
【解析】
15.;20;1;2
;1;0;4000
【解析】
16.7;10;1925;
7;3;
【解析】
(1)运用除法的性质进行简算即可;
(2)把3.2拆成4×0.8,然后运用乘法交换律和乘法结合律进行简算即可;
(3)运用乘法分配律进行计算即可;
(4)同级运算按照从左到右的运算顺序进行计算即可;
(5)运用加法交换律和减法的性质进行计算即可;
(6)先算除法,然后运用减法的性质进行计算即可。
=437÷(12.5×0.8)
=437÷10
=43.7
=4×0.8×2.5×1.25
=(4×2.5)×(0.8×1.25)
=10×1
=10
=
=
=1925
=
=
=7
=
=
=3
=
=
=
=
17.;6
16.8;12.6
【解析】
(1)先算小括号里面的加法,再算中括号里面的减法,最后算括号外面的除法;
(2)根据乘法分配律和加法结合律进行计算;
(3)根据乘法分配律进行计算;
(4)先算小括号里面的减法,再按照从左向右的顺序进行计算。
(1)[1-(+)]÷
=[1-]÷
=÷
=
(2)(+)×11+
=×11+×11+
=5++
=5+(+)
=5+1
=6
(3)1.68×13.5-1.68×3.5
=1.68×(13.5-3.5)
=1.68×10
=16.8
(4)29.4÷2.8×(3.5-2.3)
=29.4÷2.8×1.2
=10.5×1.2
=12.6
18.(1)576;(2)0
(3)20;(4)
【解析】
(1)根据运算顺序,先计算除法,再计算乘法;
(2)根据交换律和结合律把式子转化为,再进行计算;
(3)根据乘法分配律进行计算即可;
(4)把中括号里的算式根据减法的性质转化为,再进行计算。
(1)
(2)
(3)
(4)
19.5;16;
【解析】
(1)把3.2拆解成0.4×8,再利用乘法交换律和乘法结合律简便计算;
(2)除以变成乘,最后一个变成×1,再利用乘法分配律简便计算;
(3)先计算小括号里的加法,再计算中括号里的乘法,最后计算中括号外的除法。
=
=
=
=5
=
=
=
=16
=
=
=
=
20.;;27
【解析】
(1)交换和的位置,利用加法交换律和加法结合律简便计算;
(2)把99拆解成(100-1),再利用乘法分配律简便计算;
(3)把百分数62.5%转化成分数,除以变成乘40,再利用乘法分配律简便计算。
=
=
=
=
=
=
=
=
=
=25+32-30
=27
21.4;
62.5;333000
【解析】
,改写成进行简算;
,可先算小括号中的减法,再算中括号中的减法,最后算乘法;
,可利用乘法分配律进行简算;
,改写成333×3×222+333×334后进行简算。
=
=5-1
=4
=
=
=
=6.25×(2.8+7.2)
=6.25×10
=62.5
=333×3×222+333×334
=333×(3×222)+333×334
=333×(666+334)
=333×1000
=333000
22.75;5.55;
7.5;;
【解析】
(1)(2)按照四则混合运算的顺序计算;
(3)逆用减法的性质进行计算;
(4)把分数化成小数,再根据乘法分配律计算;
(5)把改写成再计算;
(6)先对括号里的分数进行通分,把小数0.6改写成分数,再计算。
(1)(1.5-1.5×0.6)÷0.8
=(1.5-0.9)÷0.8
=0.6÷0.8
=0.75
(2)73.2÷24+2.5
=3.05+2.5
=5.55
(3)
=
=
=
=
(4)
=
=
=3.75×2
=7.5
(5)
=
=
=
(6)
=
=
=
=
23.64;24.4;353.5
【解析】
(1)按照分数四则混合运算的顺序,先算加法,再算乘法,最后算除法;
(2)运用“带着符号搬家”的方法,把原式改写为19.92-9.92+14.4,再从左往右依次计算;
(3)把101分解成100+1,再运用乘法分配律简算。
=
=4÷
=64
=19.92-9.92+14.4
=10+14.4
=24.4
=(100+1)×3.5
=100×3.5+1×3.5
=350+3.5
=353.5
24.;64;160
36;2;23
【解析】
(1)根据减法的性质a-b-c=a-(b+c)进行简算;
(2)带符号搬家,让(125÷125)、(8×8)结合起来,计算更简便;
(3)括号里面有4个1.6,所以把1.6+1.6+1.6+1.6改写成1.6×4,再根据乘法结合律(a×b)×c=a×(b×c)进行简算;
(4)利用积不变的规律,将0.8×36改写成8×3.6,再根据乘法分配律的逆运算a×c+b×c=(a+b)×c进行简算;
(5)将0.375化成,25%化成,然后根据加法交换律a+b=b+a,加法结合律(a+b)+c=a+(b+c)进行简算;
(6)根据乘法分配律(a+b)×c=a×c+b×c进行简算。
(1)
=
=
=
(2)125×8÷125×8
=(125÷125)×(8×8)
=1×64
=64
(3)(1.6+1.6+1.6+1.6)×25
=1.6×4×25
=1.6×(4×25)
=1.6×100
=160
(4)3.6×18-0.8×36
=3.6×18-8×3.6
=3.6×(18-8)
=3.6×10
=36
(5)
=
=
=1+1
=2
(6)
=
=
=34-11
=23
25.(1)65;(2)30.2;(3)380;
(4)37;(5);(6)
【解析】
(1)从左向右进行计算;
(2)先算小括号里的加法,再算括号外的除法;
(3)运用乘法分配律进行简算;
(4)运用乘法交换律进行简算;
(5)先算小括号里的减法,再算中括号里的乘法,最后算括号外的除法;
(6)把除以7化成乘,再运用乘法分配律进行简算。
(1)270-49-156
=221-156
=65
(2)(5.9+1.65)÷0.25
=7.55÷0.25
=30.2
(3)3.8×99+3.8
=3.8×(99+1)
=3.8×100
=380
(4)4×0.37×25
=4×25×0.37
=100×0.37
=37
(5)÷[×(-)]
=÷[×]
=÷
=
(6)÷7+×
=×+×
=(+)×
=1×
=
26.;21;0.237
【解析】
(1)提取相同的分数,利用乘法分配律简便计算;
(2)交换3.2和7.22的位置,利用加法交换律和加法结合律简便计算;
(3)利用除法的性质,先计算8×1.25,再计算除法。
=
=
=
=
=11+10
=21
=
=2.37÷10
=0.237
27.2;;40
【解析】
,先算乘法,再算除法;
,先算除法,再算减法;
,先算除法,再算加法。
28.12;;11
【解析】
(1)先算乘法,再算加法;
(2)按照从左到右的顺序计算;
(3)按照乘法分配律计算。
(1)
(2)
(3)
29.;10;
248;
【解析】
(1)把百分数转化成分数后,先计算小括号里的减法,再计算中括号里的乘法,最后计算中括号外的除法;
(2)利用加法交换律和减法的性质,把算式变成简便计算;
(3)把17×19看作一个整体,利用乘法分配律简便计算;
(4),,依次类推,把每一个分数转化成两个分数的差,前后两个分数相互抵消后,简便计算即可;
=
=
=
=
=
=
=
=10
=
=
=248
=
=
=
=
30.9;29;
;
【解析】
(1)小括号打开,加号变减号,先计算25.39-5.39,再计算另一个减法;
(2)除以变成乘36,利用乘法分配律简便计算;
(3)先计算小括号里的分数减法,再计算除法,最后计算中括号外的乘法;
(4)先计算-×0.75,提取相同的分数,利用乘法分配律简便计算,同时计算出后面的分数除法,最后计算加法。
25.39-(5.39+9.1)
=25.39-5.39-9.1
=20-9.1
=10.9
(+-)÷
=(+-)×36
=×36+×36-×36
=12+20-3
=29
×[(-)÷0.5]
=×[(-)÷]
=×[÷]
=×
=
-×0.75+÷
=×(1-0.75)+
=×+
=+
=+
=
31.(1)=;(2)=5
【解析】
(1)先化简方程,再根据等式的性质,方程两边同时除以即可;
(2)先根据比例的基本性质,把式子转化为,再根据等式的性质,方程两边同时除以即可。
(1)
解:
(2)
解:
32.;
【解析】
(1)先把方程左边化简为,两边再同时乘;
(2)方程两边同时乘,两边再同时乘。
(1)
解:
(2)
解:
33.(1);(2);(3)
【解析】
(1)根据等式的性质2,方程两边同时乘,两边再同时除以4;
(2)根据等式的性质1和2,方程两边同时减去的积,两边再同时乘;
(3)根据等式的性质2,方程两边同时乘,两边再同时乘3。
【解答】
(1)
解:
(2)
解:
(3)
解:
34.(1);(2);(3)
【解析】
(1)利用等式的性质2,方程两边同时除以;
(2)利用等式的性质2,方程两边先同时乘,再同时除以;
(3)先化简方程左边含有字母的式子,再利用等式的性质2,方程两边同时除以。
(1)
解:
(2)
解:
(3)
解:
35.;;
【解析】
根据等式的性质,方程两边同时加上1.8,再同时除以求解;
根据等式的性质,方程两边同时除以75%,再同时加上求解;
根据等式的性质,方程两边同时乘x,再同时除以求解;
解:
解:
解:
36.;
【解析】
(1)根据等式的性质,方程两边同时乘,再同时除以6即可;
(2)先化简方程为,再把方程两边同时除以1.35求解。
解:
解:
37.x=19.2;x=;x=29.2
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;
方程中含有括号时,把括号看作一个整体,据此解方程即可。
(1)x+25%x=24
解:1.25x=24
x=24÷1.25
x=19.2
(2)+x=
解:x=-
x=
x=÷
x=×
x=
(3)(x-9.2)=15
解:x-9.2=15÷
x-9.2=20
x=20+9.2
x=29.2
38.x=;x=;x=
【解析】
(1)先把方程左边的合并,再利用等式的性质2,两边同时除以,求出未知数;
(2)先计算方程右边的乘法,再利用等式的性质2,两边同时乘,求出未知数;
(3)方程左右两边同时减去,再同时除以0.4,求出未知数。
x+x=
解:x=
x=÷
x=
x÷=18×
解:x÷=12
x=12×
x=
40%x+=
解:40%x=-
0.4x=
x=÷0.4
x=
39.x=3;x=;x=36
【解析】
(1)先化简方程,根据等式的性质,方程两边同时除以即可得解;
(2)先将百分数和小数化为分数,根据等式的性质,方程两边同时加上x,再减去,最后除以即可得解;
(3)先化简方程,根据等式的性质,方程两边再同时加上5,最后方程两边同时除以即可得解。
(1)x-x=
解:x=
x=÷
x=×
x=3
(2)-37.5%x=0.125
解:-x=
-x+x=+x
x=-
x=
x=÷
x=×
x=
(3)(x-6)×=25
解:x-5=25
x=30
x=30÷
x=30×
x=36
40.;x=28;
【解析】
解:
解:
x=28
解:
41.;;
【解析】
解:
解:
解:
42.x=128;x=12;x=
【解析】
①可以把看成一个整体,应用等式的性质1,方程左右两边同时减去6,再应用等式性质2,方程左右两边同时除以,得到方程的解;
②逆用乘法分配律,百分数化为小数,将方程整理成0.8x=9.6,最后应用等式的性质2,方程左右两边同时除以0.8,得到方程的解;
③含有未知数的项作为减数,可应用减法中各部分的关系,将方程整理成,最后应用等式的性质2,将方程左右两边同时除以,得到方程的解。
解:
x-20%x=9.6
解:(1-0.2)x=9.6
0.8x=9.6
x=9.6÷0.8
x=12
解:
43.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此解答。
(1)
解:
(2)
解:
(3)
解:
44.x=25.5;x=10;x=10.5
【解析】
(1)利用等式的性质1和性质2解方程;
(2)先把左边有未知数的合并,再利用等式的性质2解方程;
(3)利用等式的性质1和性质2解方程;
(1)
解:
解:
解:
45.x=;x=;x=3.5
【解析】
等式的性质:等式的左右两边同时乘或除以同一个不为0的数,等式左右两边仍然相等;都含有未知数的式子,可利用乘法分配律进行化简,把百分数化成小数,再解方程即可。
解:
解:
解:
46.5cm2
【解析】
如图所示,①和②的面积相等,则阴影部分是一个梯形,梯形的面积=(上底+下底)×高÷2,把题中数据代入公式计算即可。
(6-3+6)×3÷2
=9×3÷2
=27÷2
=13.5(cm2)
所以,阴影部分的面积是13.5cm2。
47.A
解析:5cm2
【解析】
如下图所示,添加一条辅助线,左边阴影部分的面积等于A部分的面积,而A部分和另一块阴影组成一个梯形,则原来两块阴影部分的面积之和等于梯形的面积。梯形的面积=(上底+下底)×高÷2,据此代入数据计算。
(12-5+12)×5÷2
=19×5÷2
=47.5(cm2)
48.4平方厘米
【解析】
通过观察可知:阴影部分的面积可以转化成圆环面积的一半,根据圆环面积计算公式:S=π(R2-r2),代入数值计算即可。
(平方厘米)
49.C
解析:68cm
【解析】
通过观察图形可知,阴影部分的周长等于半径为12厘米的圆周长的加上直径为12厘米的圆周长的,再加上12厘米的线段;圆的周长公式C=2πr或C=πd,代入数据列式计算。
=
(cm)
50.12dm2
【解析】
由图可知这个组合图形是由等腰三角形和半圆组成,底、高和圆的直径都是4dm,根据三角形的面积=底×高÷2,半圆的面积=,代入数据,求出等腰三角形和半圆的面积,两个图形的面积相加即是这个组合图形的面积。
(4×4)÷2
=16÷2
=8(dm2)
4÷2=2(dm)
3.14×22÷2
=3.14×4÷2
=12.56÷2
=6.28(dm2)
6.28+8=14.28(dm2)
51.61平方厘米
【解析】
长方形的宽等于圆的直径,长方形的长等于圆的直径加上圆的半径,根据长方形的周长公式可知:(长+宽)×2=30,相当于(3r+2r)×2=30,所以可计算出圆的半径。再利用长方形的面积公式:S=ab计算出长方形的面积,利用圆的面积公式:S=计算出1个圆加半个圆的面积,用长方形的面积减去1个半圆的面积,即是阴影部分的面积。
半径:(厘米)
长方形面积:
=9×6
=54(平方厘米)
圆面积:
=3.14×9+3.14×9÷2
=28.26+14.13
=42.39(平方厘米)
阴影部分面积:(平方厘米)
52.44平方厘米
【解析】
从图中可知,阴影部分的面积=正方形的面积-圆的面积;其中正方形的面积=边长×边长,圆的面积S=πr2,代入数据计算即可。
正方形面积:4×4=16(平方厘米)
圆的面积:
3.14×(4÷2)2
=3.14×4
=12.56(平方厘米)
阴影部分面积:16-12.56=3.44(平方厘米)
53.5平方米
【解析】
由图可知,小圆的直径为大圆的半径,阴影部分的面积=大半圆的面积-空白部分小圆的面积,据此解答。
3.14×(20÷2)2÷2-3.14×(20÷2÷2)2
=3.14×102÷2-3.14×52
=3.14×100÷2-3.14×25
=3.14×(100÷2-25)
=3.14×(50-25)
=3.14×25
=78.5(平方米)
54.C
解析:面积6.88cm2;周长20.56cm
【解析】
从图中可以看出,2个圆可以组成一个半圆;阴影部分的面积=长方形的面积-圆的面积;阴影部分的周长=圆周长的一半+8;根据公式:S长方形=ab,S圆=πr2,C圆=2πr,分别代入数据计算即可。
阴影部分的面积:
8×4-3.14×42×
=32-3.14×8
=32-25.12
=6.88(cm2)
阴影部分的周长:
2×3.14×4×+8
=12.56+8
=20.56(cm)
55.72平方厘米
【解析】
观察图形可知,阴影部分的面积=梯形的面积-半圆的面积。梯形的面积=(上底+下底)×高÷2,半圆的面积=πr2÷2,据此代入数据计算。
(4+6)×2÷2-22×3.14÷2
=10-6.28
=3.72(平方厘米)
56.44平方厘米
【解析】
通过观察可知,阴影部分的面积=梯形面积-圆的面积,梯形面积=(上底+下底)×高÷2,圆面积=,以此作答。
(4+10)×4÷2-3.14×42÷4
=28-12.56
=15.44(平方厘米)
【点睛】
此题主要考查学生对圆和梯形面积公式的应用。
57.48cm2
【解析】
如下图,把左边阴影部分平移到右边空白部分,如箭头所示,这样阴影部分组成一个梯形,根据梯形的面积=(上底+下底)×高÷2,代入数据计算即可。
(6+10)×6÷2
=16×6÷2
=96÷2
=48(cm2)
58.86cm2
【解析】
通过观察图形可知,阴影部分的面积=梯形的面积-等腰直角三角形的面积-半径为2cm的圆的面积;梯形面积公式S=(a+b)×h÷2,三角形的面积公式:S=ah÷2,圆的面积公式:S=πr2,把数据分别代入公式解答。
(2+4)×(4+2)÷2
=6×6÷2
=36÷2
=18(cm2)
4×4÷2
=16÷2
=8(cm2)
3.14×22×
=3.14×4×
=3.14(cm2)
18-8-3.14
=10-3.14
=6.86(cm2)
59.5平方厘米
【解析】
如图所示,根据圆的特征,①、②部分的面积完全相等,求阴影部分的面积就是求②、③部分的面积和,而②、③部分组合成一个上底为5厘米、下底为8厘米、高为5厘米的梯形。阴影部分面积等于梯形面积。
(5+8)×5÷2
=13×5÷2
=65÷2
=32.5(平方厘米)
60.74cm2
【解析】
先利用梯形的面积公式:(上底+下底)×高÷2,计算出梯形的面积,再利用圆的面积公式:,再乘,计算出个圆的面积,用梯形的面积减去个圆的面积,即是图中阴影部分的面积。
(6+12)×6÷2-3.14×6×6÷4
=18×6÷2-18.84×6÷4
=54-28.26
=25.74(cm2)
展开阅读全文